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Motivation

Data:

• Motion capture sequences,
e.g. a jump or a golf swing.

• Each motion corresponds to
a different style or mood.

Goal: Generate new motions by
interpolating between the
captured clips.

Pre-processing: The clips need
to be temporally aligned.



Motivation

Assume we are given some time-series data with inputs x ∈ RN and
J output sequences {yj ∈ RN}.
We know that there are multiple underlying function that generated
this data, say K such functions, fk(·), and the observed data was
generated by warping the inputs to the true functions using some
warping function gj(x) such that:

yj = fk(gj(x)) + noise. (1)

Two groups
(to be found
automatically):

Unknown warps
Unknown
latent functions



Motivation
Unknowns:

• Number of underlying functions K

• Underlying functions fk(·)
• Warps gj(·) for each sequence
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Motivation

Let’s try to find K using K-means clustering:
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Motivation
K-means clustering vs. correct labels:
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Motivation

A PCA scatter plot of the data:
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Alignment model

Three constituent parts:

• Model of transformations (warps), gj

• Model of sequences, fk

• Alignment objective



Model of transformations (warps)

Observed sequences
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Example warp

• Parametric warps.∑
i∈I wi = 1,wi ≥ 0 ∀ i ∈ I

• Nonparametric warps.
For example, monotonic GPs
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Model of sequences

Option 1: interpolate sequences using
linear interpolation or splines.

Option 2: fit GPs to the sequences.

• principled way to handle
observational noise

• can impose priors of fk
Observed sequences
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Notation

Assume that the observed data was generated as:

yj = fk(gj(x)) + εj , εj ∼ N (0, β−j 1) (2)

where x are fixed linearly spaced input locations (or evenly sampled
time).

Then the corresponding aligned sequences are:

sj := fk(x) (3)

The joint conditional likelihood is:

p

([
sj
yj

]∣∣∣∣Gj ,Xj , θj

)
∼ N

(
0,

[
kθj (X ,X ) kθj (X ,Gj)

kθj (Gj ,X ) kθj (Gj ,Gj) + β−1
j

])
(4)



Model of sequences

Pseudo-observations S
Evenly spaced inputs X
Observations Y
Warped inputs g(X)

Then the goal is to:

• Fit GPs to observations and pseudo-observations
{[g(X),X], [Y,S]} for each sequence

• Impose alignment constraint on pseudo-observations {X,S}



Alignment objective

We want an alignment objective that:

• infers the number of clusters (underlying functions) K

• aligns sequences within these clusters

We aim to design a clustering or dim. reduction objective that is
invariant to the transformation (warps) of the inputs



Pairwise distance alignment objective

Minimise the pairwise distance between all sequences (irrespective
of the underlying clusters of functions):

L =
J∑

n=1

J∑
m=n+1

||sn(x)− sm(x)||2 (5)
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Traditional GP-LVM

• Observe high-dimensional data S.

• Find low-dim representation Z that captures the structure of S.

• Find a mapping f from Z to S.

Latent space Z Mapping h Inputs S

sj = h ( zj , θ ) + noise,

where θ are parameters of h.



Traditional GP-LVM

In a GP-LVM, GPs are taken to be independent across the features
and the likelihood function is:

p(S | x) =
D∏

d=1

p(sd | x) =
D∏

d=1

N (sd | 0,K + γ−1I ) (6)

Observed data Y in matrix form Aligned data S in matrix form



GP-LVM as alignment objective

We impose the alignment objective by learning a low-dimensional
representation Z of the pseudo-observations S.

LGP-LVM = log p(S | Z, θh, θz , β)

=
N

2
log |Kzz |︸ ︷︷ ︸

complexity terms

− 1

2
Tr(K−1

zz SS
T )︸ ︷︷ ︸

data fitting terms

+ log(p(Z | θz))︸ ︷︷ ︸
prior over latent variables

+ log(p(θh))︸ ︷︷ ︸
prior over GP mappings

+ const

(7)

As an alignment objective, it is controlled by:

1. prior over the latent variables Z, p(Z) ∼ N (0, θz I )

2. lengthscale in the GP-LVM mapping (part of θh))



Aside: Pairwise distance alignment objective
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Aside: GP-LVM as alignment objective
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Aside: Bayesian Mixture Model as alignment objective
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Full objective for sequence alignment

1. For each of the J sequences we perform standard GP regression
on the observed data yj and the pseudo-observations sj by
learning the hyperparameters of the GPs and the parameters of
the warpings.

2. Impose the alignment objective on the pseudo-observations S

The sum of the log-likelihoods is:

L =
J∑

j=1

LGPi
+ LGP-LVM +

J∑
j=1

log p(gj)

=
J∑

j=1

log p([sj , yj ]
T | x, gj , θj , βj) + LGP-LVM(Z, ψh, ψz , γ) +

J∑
j=1

log p(gj)

(8)



Results on ECG data
Input data:

Alignment with GP-LVM objective:
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Competing objectives and joint model
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Competing objectives and joint model

Y

f

g

X

S

h

Z

γ

β

J

Likelihood p(S | H,FX) as an equal mixture (where Sj and Sn refer
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Multi-task learning and Matrix distributions

Given data Y ∈ RJ×N :

1. each sequence (row) has a GP prior and there’s a free-form
matrix C that models the covariances between the sequences1.

2. learn sparse inverse covariance between features while
accounting for a low-rank confounding covariance between
samples using GP-LVM2:

p(Y | R,C−1) = N (vec(Y ) | 0N×D ,C ⊗ R + σ2IN×D) (9)

1 Bonilla et al. Multi-task Gaussian Process Prediction (2008)
2 Stegle et al. Efficient inference in matrix-variate Gaussian models with iid
observation noise (2011)



More generally...

These types of constructions are useful when:

1. The data has a hierarchical structure with additional
constraints:

yj = fk(gj(x)) + εj , εj ∼ N (0, β−j 1)

2. We want to perform dim. reduction or clustering that is
invariant to a specific transformation



Uncertainty in alignment model



Uncertainty in alignment model

While the alignment model is probabilistic, so far we only considered
point estimates and ignored the uncertainties associated with
warpings and group assignments.

Uncertainty in the alignment model contains:

1. Observed sequences are often noisy

2. Warping uncertainty

3. Assignment of sequences to groups is ambiguous



Uncertainty in alignment model
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Going beyond the point estimates of the warps

• So far we have been computing point estimates of the warps
(by optimising Gj directly).

• To model warping uncertainty we developed a nonparametric
model1 of monotonic warps based on the Gaussian process
differential flow model2.
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Fully probabilistic model - Mean-field

• The composition of a warp (g -function) and a GP (f -function)
is similar to a two-layer DGP

• Exact inference is also intractable, so we augment both layers
with inducing points {Ug} and {Uf }

• Inducing points effectively define mappings in each layer. If
they are independent, the mappings do not match each other
to fit the observations
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Beyond mean-field variational distribution

Use optimal distribution of inducing points1

Two components of a variational distribution:

1. Free-form variational distribution q({Ug}) for the inducing
points of the warp

2. For a given output G of the warp, we define q({Uf }) to be the
optimal variational distribution1 of inducing points in a GP
mapping G to the observations

1M. Titsias. Variational Learning of Inducing Variables in Sparse Gaussian
Processes, 2009



Beyond mean-field variational distribution

Use optimal distribution of inducing points

Fitting the model:

1. Sample {Ug} ∼ q({Ug})
2. Conditioned on this sample, sample (again) the output the

warps G ∼ p(G | {Ug})
3. Conditioned on G , compute the optimal distribution of

inducing points q({Uf }) and the likelihood

p(Y | G ) =

∫
p(Y | G , {Uf })q({Uf })dUf

The only variational parameters to optimise are those of q({Ug}),
which we can do by maximising p(Y | G ) (using the
reparametrisation trick)

Salimbeni & Deisenroth. Doubly Stochastic Variational Inference for Deep
Gaussian Processes (2017)



2-layer DGP

Consider 2-layer DGP where first layer is monotonic:

Overall fit Warpings Fit in warped coordinates
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Thank you
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