
Bayesian neural networks: a function space view tour

Yingzhen Li

Microsoft Research Cambridge



Neural networks 101

Let’s say we want to classify different types of cats

• x : input images; y : output label

• build a neural network (with param. W ):

p(y |x ,W ) = softmax(fW (x))

"cat"

A typical neural network:

fW (x) = WLφ(WL−1φ(...φ(W1x + b1)) + bL−1) + bL

for the l th layer: hl = φ(Wlhl−1 + bl), h1 = φ(W1x + b1)

Parameters: W = {W1, b1, ...,WL, bL}; nonlinearity: φ(·)
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Neural networks 101

Let’s say we want to classify different types of cats

• x : input images; y : output label

• build a neural network (with param. W ):

p(y |x ,W ) = softmax(fW (x))

"cat"

Typical deep learning solution:

Training the neural network weights:

• Maximum likelihood estimation (MLE) given a dataset D = {(xn, yn)}Nn=1:

W ∗ = arg min
N∑

n=1

log p(yn|xn,W )
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Bayesian neural networks 101

Let’s say we want to classify different types of cats

• x : input images; y : output label

• build a neural network (with param. W ):

p(y |x ,W ) = softmax(fW (x))

"cat"

A Bayesian solution:

Put a prior distribution p(W ) over W

• compute posterior p(W |D) given a dataset D = {(xn, yn)}Nn=1:

p(W |D) ∝ p(W )
N∏

n=1

p(yn|xn,W )

• Bayesian predictive inference:

p(y∗|x∗,D) = Ep(W |D)[p(y∗|x∗,W )]
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Bayesian neural networks 101

Let’s say we want to classify different types of cats

• x : input images; y : output label

• build a neural network (with param. W ):

p(y |x ,W ) = softmax(fW (x))

"cat"

In practice: p(W |D) is intractable

• First find approximation q(W ) ≈ p(W |D)

• In prediction, do Monte Carlo sampling:

p(y∗|x∗,D) ≈ 1

K

K∑
k=1

p(y∗|x∗,W k), W k ∼ q(W )
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Applications of Bayesian neural networks

Detecting adversarial examples:

Li and Gal 2017
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Applications of Bayesian neural networks

Image segmentation

Kendall and Gal 2017
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Applications of Bayesian neural networks

Medical imaging (super resolution):

Tanno et al. 2019
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Bayesian neural networks vs Gaussian processes

Why learning about BNNs in a summer school about GPs?

• mean-field BNNs have GP limits

• approximate inference on GPs has links to BNNs

• approximate inference on BNNs can leverage GP

techniques
Bayesian Deep Learning
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BNN → GP



Bayesian neural networks → Gaussian process

Quick refresher: Central limit theorem

Theorem

Let x1, ..., xN be i.i.d. samples from p(x) and p(x) has mean

µ and covariance Σ, then

1

N

N∑
n=1

xn
d→ N

(
µ,

1

N
Σ

)
, N → +∞
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Bayesian neural networks → Gaussian process 1

Consider one hidden layer BNN with mean-field prior and bounded non-linearity

f (x) =
M∑

m=1

vmφ(wT
m x + bm),

W = {W1,b,W2}, W1 = [w1, ...,wm]T , b = [b1, ..., bm], W2 = [v1, ..., vm],

mean-field prior

p(W ) = p(W1)p(b)p(W2), p(W1) =
∏
m

p(wm), p(b) =
∏
m

p(bm), p(W2) =
∏
m

p(vm),

the same prior for each connection weight/bias:

p(wi ) = p(wj), p(bi ) = p(bj), p(vi ) = p(vj), ∀i , j

1Radford Neal’s derivation in his PhD thesis (1994)
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Bayesian neural networks → Gaussian process 1

Consider one hidden layer BNN with mean-field prior and bounded non-linearity

f (x) =
M∑

m=1

vmφ(wT
m x + bm),

the same prior for each connection weight/bias:

p(wi ) = p(wj), p(bi ) = p(bj), ∀i , j

⇒ the same distribution of the hidden unit outputs:

hi (x) ⊥ hj(x), hi (x)
d
= hj(x), hi (x) = φ(wT

i x + bi )

⇒ i.e. h1(x), ..., hM(x) are i.i.d. samples from some implicitly defined distribution

1Radford Neal’s derivation in his PhD thesis (1994)
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Bayesian neural networks → Gaussian process 1

Consider one hidden layer BNN with mean-field prior and bounded non-linearity

f (x) =
M∑

m=1

vmφ(wT
m x + bm),

mean-field prior with the same distribution for second layer connection weights:

vi ⊥W1,b, p(vi ) = p(vj), ∀i , j

⇒ vihi (x) ⊥ vjhj(x), vihi (x)
d
= vjhj(x)

so f (x) is a sum of i.i.d. random variables

1Radford Neal’s derivation in his PhD thesis (1994)
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Bayesian neural networks → Gaussian process 1

Consider one hidden layer BNN with mean-field prior and bounded non-linearity

f (x) =
M∑

m=1

vmφ(wT
m x + bm),

if we make E[vm] = 0 and V[vm] = σ2
v scale as O(1/M):

E[f (x)] =
M∑

m=1

E[vm]E[hm(x)] = 0

V[f (x)] =
M∑

m=1

V[vmhm(x)] =
M∑

m=1

σ2
vE[hm(x)2]→ σ2

vE[h(x)2]

1Radford Neal’s derivation in his PhD thesis (1994)
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Bayesian neural networks → Gaussian process 1

Consider one hidden layer BNN with mean-field prior and bounded non-linearity

f (x) =
M∑

m=1

vmφ(wT
m x + bm),

if we make E[vm] = 0 and V[vm] = σ2
v scale as O(1/M):

Cov[f (x), f (x ′)] =
M∑

m=1

σ2
vE[hm(x)hm(x ′)]→ σ2

vE[h(x)h(x ′)]

1Radford Neal’s derivation in his PhD thesis (1994)
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Bayesian neural networks → Gaussian process 1

Consider one hidden layer BNN with mean-field prior and bounded non-linearity

f (x) =
M∑

m=1

vmφ(wT
m x + bm),

if we make E[vm] = 0 and V[vm] = σ2
v scale as O(1/M):

(f (x), f (x ′))
d→ N (0,K ), K (x , x ′) = σ2

vE[h(x)h(x ′)] (CLT)

it holds for any x , x ′ ⇒ f ∼ GP(0,K (x , x ′))

1Radford Neal’s derivation in his PhD thesis (1994)

6



Bayesian neural networks → Gaussian process

Recent extensions of Radford Neal’s result:

• deep and wide BNNs have GP limits

• mean-field prior over weights

• the activation function satisfies |φ(x)| ≤ c + A|x |
• hidden layer widths strictly increasing to infinity

Matthews et al. 2018, Lee et al. 2018
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Bayesian neural networks → Gaussian process

Recent extensions of Radford Neal’s result:

• Bayesian CNNs have GP limits

• Convolution in CNN = fully connected layer

applied to different locations in the image

• # channels in CNN = # hidden units in fully

connected NN

Garriga-Alonso et al. 2019, Novak et al. 2019
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GP → BNN



Gaussian process → Bayesian neural networks

Exact GP inference can be very expensive:

predictive inference for GP regression:

p(f∗|X∗,X, y) = N (f∗; K∗n(Knn + σ2I)−1y ,K∗∗ −K∗n(Knn + σ2I)−1Kn∗)

(Knn)ij = K (xi , xj), Knn ∈ RN×N

Inverting Knn + σ2I has O(N3) cost!
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Gaussian process → Bayesian neural networks

Quick refresher: Fourier (inverse) transform

S(w) =

∫
s(t)e−itwdt

s(t) =

∫
S(w)e itwdw
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Gaussian process → Bayesian neural networks

Bochner’s theorem: (Fourier inverse transform)

Theorem

A (properly scaled) translation invariant kernel K (x , x ′) = K (x − x ′) can be represented as

K (x , x ′) = Ep(w)

[
σ2e iw

T (x−x′)
]

for some distribution p(w).

• Real value kernel ⇒ Ep(w)

[
σ2e iw

T (x−x′)
]

= Ep(w)

[
σ2cos(wT (x − x ′))

]
• cos(x − x ′) = 2Ep(b)[cos(x + b)cos(x ′ + b)], p(b) = Uniform[0, 2π]

Rahimi and Recht 2007
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Gaussian process → Bayesian neural networks

Bochner’s theorem: (Fourier inverse transform)

Theorem

A (properly scaled) translation invariant kernel K (x , x ′) = K (x − x ′) can be represented as

K (x , x ′) = Ep(w)p(b)

[
σ2cos(wTx + b)cos(wTx ′ + b)

]
for some distribution p(w) and p(b) = Uniform[0, 2π].

• Real value kernel ⇒ Ep(w)

[
σ2e iw

T (x−x′)
]

= Ep(w)

[
σ2cos(wT (x − x ′))

]
• cos(x − x ′) = 2Ep(b)[cos(x + b)cos(x ′ + b)], p(b) = Uniform[0, 2π]

Rahimi and Recht 2007
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Gaussian process → Bayesian neural networks

Bochner’s theorem: (Fourier inverse transform)

Theorem

A (properly scaled) translation invariant kernel K (x , x ′) = K (x − x ′) can be represented as

K (x , x ′) = Ep(w)p(b)

[
σ2cos(wTx + b)cos(wTx ′ + b)

]
for some distribution p(w) and p(b) = Uniform[0, 2π].

• Monte Carlo approximation:

K (x , x ′) ≈ K̃ (x , x ′) =
σ2

M

M∑
m=1

cos(wT
m x + bm)cos(wT

m x ′ + bm), wm, bm ∼ p(w)p(bm)

Rahimi and Recht 2007
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Gaussian process → Bayesian neural networks

Bochner’s theorem: (Fourier inverse transform)

Theorem

A (properly scaled) translation invariant kernel K (x , x ′) = K (x − x ′) can be represented as

K (x , x ′) = Ep(w)p(b)

[
σ2cos(wTx + b)cos(wTx ′ + b)

]
for some distribution p(w) and p(b) = Uniform[0, 2π].

• Monte Carlo approximation: Define

h(x) = [h1(x), ..., hM(x)], hm(x) = cos(wT
m x + bm), wm ∼ p(w), bm ∼ p(b)

⇒ K̃ (x , x ′) =
σ2

M
h(x)Th(x ′)

Rahimi and Recht 2007
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Gaussian process → Bayesian neural networks

Approximating the GP kernel with random feature expansions:

f ∼ GP(0,K (x , x ′)), f ≈ f̃ , f̃ ∼ GP(0, K̃ (x , x ′)), K̃ (x , x ′) =
σ2

M
h(x)Th(x ′)

Weight space view ⇒ single hidden layer BNN:

f̃ ∼ GP(0, K̃ (x , x ′)) ⇔ f̃ (x) = vTh(x), v ∼ p(v) = N (0,
σ2

M
I)

Adding number of components (increase M) → adding hidden units in BNNs
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Gaussian process → Bayesian neural networks

Deep GPs → deep BNNs with bottleneck layers:

Deep Gaussian process:

f (x) = f (L) ◦ f (L−1) ◦ · · · ◦ f (0)(x),

f (i) ∼ GP(0,K (i)(x , x ′))

Bui et al. 2016

Recall weight space view: K̃ (x , x ′) ≈ K (x , x ′)

f̃ ∼ GP(0, K̃ (x , x ′)) ⇔ f̃ (x) = vT cos(W x + b) W ,b, v ∼ p(W )p(b)p(v)
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Gaussian process → Bayesian neural networks

Deep GPs → deep BNNs with bottleneck layers:

Deep BNN approximation to deep GP:

f̃ ≈ f , f̃ (x) = f̃ (L) ◦ f̃ (L−1) ◦ · · · ◦ f̃ (0)(x),

f̃ (i)(x) = vT
i cos(Wix + bi ),

Wi ,bi , vi ∼ p(Wi )p(bi )p(vi ),
N∏

n=1

p(yn|f (xn))p(f ) ≈
N∏

n=1

p(yn|xn,W )p(W )
Cutajar et al. 2017
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Gaussian process → Bayesian neural networks

Deep GPs → deep BNNs with bottleneck layers:

Approx. infer. for deep GP: random feature expansion + approx. infer. for BNNs:

pDGP(y∗|x∗,D) ≈ pBNN(y∗|x∗,D) ≈ 1

K

K∑
k=1

pBNN(y∗|x∗,W k), W k ∼ q∗(W )

q∗(W ) obtained by e.g. variational inference:

q∗(W ) = arg min
q(W )

Eq(W )

[
N∑

n=1

log pBNN(y∗|x∗,W )

]
−KL[q(W )||p(W )]

Cutajar et al. 2017
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BNN function-space inference



BNN inference in function space?

• weight space approximations can be inefficient

• how to do function space inference for BNNs?

Ma et al. 2019, Foong et al. 2019
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Implicit Stochastic Processes

Definition: An implicit stochastic process (IP) is a collection of random variables f (·), such

that any finite collection f = (f (x1), ..., f (xN))> has joint distribution implicitly defined by the

following generative process:

z ∼ p(z), f (xn) = gθ(xn, z), ∀ xn ∈ X.

A function distributed according to the above IP is denoted as f (·) ∼ IP(gθ(·, ·), pz).
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Implicit Stochastic Processes

z can be finite or infinite dimensional:

• Finite dimensional z:

prove via Kolmogorov extension theorem

(marginalisation consistency & permutation invariance)

• Infinite dimensional case (here z = z(·) is a random function):

sufficient conditions:

• z(·) ∼ SP(0,C(·, ·)) is a centered stochastic process on L2(Rd)

• g(x, z) = φ(
∫

x

∑M
m=0 Km(x, x′)z(x′)dx′), Km ∈ L2(Rd × Rd), |φ(x)| ≤ A|x |

Then f (·) is also a stochastic process.

Proof: apply Karhunen-Loeve expansion and check convergence in L2(Rd).
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Implicit Stochastic Processes

Examples:

Bayesian NN warped GP neural sampler

Also include many simulators in physics, ecology, climate science...
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Implicit Process Regression

Implicit process regression model:

f (·) ∼ IP(gθ(·, ·), pz), y = f (x) + ε, ε ∼ N (0, σ2).

• Similar to GP regression, given dataset D = {X, y}, we hope to compute

p(f|X, y) ∝ p(y|f)p(f|X)

• Then for predictive inference, compute

p(y∗|x∗,D) =

∫
p(y∗|f ∗)p(f ∗|X, y)df ∗

intractable due to the unknown distribution p(f) (cannot use variational inference directly)
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Variational Implicit Processes

Generalised wake-sleep applied to implicit processes

• Sleep phase: approximate pθ(y, f|X) ≈ q(y, f|X)

• Wake phase: approximate log pθ(y|X) ≈ log q(y|X) then maximise w.r.t θ

• large-scale learning: spectral approximations lead to a Bayesian linear regression problem

Dayan et al. 1995
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Variational Implicit Processes

Sleep phase:

• Define qGP(y, f|X) = q(y|f)qGP(f|X), q(y|f) = p(y|f)︸ ︷︷ ︸
same likelihood term

• for any X, use (y, f) ∼ p(y, f|X) as targets to train q:

min
q

DKL[p(y, f|X)||qGP(y, f|X)]

• Reduce to matching mean & covariance functions (with finite function samples):

m?
MLE(x) =

1

S

∑
s

fs(x), K?MLE(x1, x2) =
1

S

∑
s

∆s(x1)∆s(x2),

∆s(x) = fs(x)−m?
MLE(x), fs(·) ∼ IP(gθ(·, ·), pz).

q?GP(f|X,m?
MLE,K?MLE, θ) depends on θ
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Variational Implicit Processes

Wake phase:

• We want to maximise log pθ(y|X) w.r.t. θ (intractable)

• Note that in sleep step we are minimising joint KL and

DKL[p(y, f|X)||qGP(y, f|X)] ≥ DKL[p(y|X)||qGP(y|X)]

• Then we use log q?GP(y|X, θ) ≈ log pθ(y|X)

• Note that q?GP(y|X, θ) depends on θ ⇒ just differentiate through
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Variational Implicit Processes

Wake phase:

For large dataset GP inference is very expensive (O(N3))

Recall the kernel structure

K?MLE(x1, x2) =
1

S

∑
s

∆s(x1)∆s(x2)

Random feature approximation:

log q?GP(y|X, θ) ≈ log

∫ ∏
n

q?(yn|xn, a, θ)p(a)da,

q?(yn|xn, a, θ) = N

(
yn;m?

MLE(xn) +
1√
S

∑
s

∆s(xn)as , σ
2

)
, p(a) = N (a; 0, I),

Bayesian linear regression (BLR) on top of function samples
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Some Experimental Results
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(a) VIP-BNN
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(b) Variational dropout (VDO-BNN)

−200 −150 −100 −50 0 50 100 150 200
x

−2

0

2

y

GPR - train mean
GPR - interpolation mean
training sample
test sample

(c) GP regression (GPR)

Solar irradiance prediction:

• methods: VIP, VDO, GPR

• Capturing the predictive mean:

VIP > GPR;

• Uncertainty estimates:

VIP > VDO;
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Some Experimental Results

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Test NLL

VIP
VDO-LSTM

α-LSTM
BB-α-BNN

VI-BNN
FITC-GP

Deep GP-EP

0.8 0.9 1.0 1.1 1.2 1.3 1.4
Test RMSE

VIP applied to Bayesian LSTM:

• CEP Data: >1 million datapoints, each x is a string represneting a molecule;

• Goal: predict power conversion efficiency

• Baselines: (deep) GP, BNN (hand-crafted features) & Bayesian LSTM (directly raw

features), with different inference methods;

• VIP works significantly better for both NLL and RMSE.
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What we have covered today...

BNNs and GPs are good friends:

• mean-field BNNs have GP limits

• approximate inference on GPs has

links to BNNs

• approximate inference on BNNs can

leverage GP techniques
Thank you!
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