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Outline
1. What are invariances?
2. Why do we want to make use of them?
3. How can we construct invariant GPs?
4. Where invariant GPs are actually crucial
5. How can we figure out what invariances to employ?
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What are invariances?
Function         does not change under some transformation 
i.e.                                  for 
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Can be discrete or continuous
- Translation
- Rotation
- Reflection
- Permutation



Invariance under discrete translation
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Periodic functions



Invariance under discrete translation

 Density(                   ) = Density(                    )
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Density of water molecules
as a function of (x, y) point in plane

1/6th of the plane already predicts
the function value everywhere

Invariance under discrete rotation
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Invariance under reflection
Solar elevation measured as function of azimuth (for different days)
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Left half already 
predicts right half



Invariance under permutation
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[100, 200, 1, 1, 1]



Invariance under permutation
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[1, 200, 1, 100, 1]



f(                                          )   =  f(                                             )                       

Invariance under permutation
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f(100, 200, 1, 1, 1) = f(1, 200, 1, 100, 1)

Different inputs but same function value



Invariance under permutation
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2  E(                           )  =  E(                           )
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Discrete symmetries

12/53



Invariance under continuous transformations
Translation

Rotation
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Example: image classification
Class label as a function of image pixel matrix

Label ( ) = “cat”
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Example: image classification
Class label as a function of image pixel matrix

Label ( ) = “cat”
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Example: image classification
Class label as a function of image pixel matrix

Label ( ) = “8”8
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Example: molecular energy

E(   ) = E(                    )
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Approximately invariant…
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Approximately invariant…

6 9
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2. Why do we want to use invariances?
- Incorporate prior knowledge about the behaviour of a system

- Physical symmetries, e.g. modelling total energy (and gradients, i.e. forces) of a set of atoms

- Helps generalisation

- Improved accuracy vs number of training points
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Toy example
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Toy example
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Toy example
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Toy example
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Constructing invariant GPs
We want a prior over functions that obey the chosen symmetry.

Symmetrise the function: Can do this by

a) appropriate mapping to invariant space

b) sum over transformations
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Permutation-invariant GPs: mapping construction
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Permutation-invariant GPs: sum construction
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:



Invariant sum kernel
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Samples from the prior
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How can we generalise this?
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Symmetry group
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Transformations can be composed:

Set of all compositions of transformations is a group; corresponds to symmetries



Orbit of x: all points reachable by transformations

Example: Permutation in 2D
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Examples of orbits: permutation invariance
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Orbit size = 2



Examples of orbits: six-fold rotation invariance
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Orbit size = 6



Examples of orbits: permutation and six-fold rotation
Orbit size = 12
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Examples of orbit: continuous rotation symmetry
Uncountably infinite
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Orbit of a periodic function in 1D
Countably infinite
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… …



Constructing invariant GPs: sum revisited
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Applications
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Molecular modelling
Time-evolution of the configuration (position of all atoms) of a system of 
atoms/molecules

Need Potential Energy Surface (PES)! Gradients = forces (easy with GPs)
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Potential Energy Surface
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Modelling Potential Energy Surface
Approximate as sum over k-mers (many-body expansion)

Invariance to rotation/translation of local environment/k-mer

Invariance under permutation of equivalent atoms
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Modelling Potential Energy Surface
Many-body expansion, sum over k-mers:
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Invariance to rotation/translation of local environment/k-mer:

Modelling Potential Energy Surface
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Map to interatomic distances



Modelling Potential Energy Surface
Invariance under permutation of equivalent atoms:
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sum over them!



How can we find out if an invariance is helpful?
- As usual (like another kernel hyperparameter): marginal likelihood

- Unlike “regular” likelihood (equivalent to training-set RMSE):
- Less overfitting
- Related to generalisation
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Marginal likelihood and generalisation
Measures how well part of the training set predicts the other training points:

= how accurately the model generalises during inference,
similar to cross-validation (but differentiable)
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Marginal likelihood



Summary: we have seen…
How to constrain GPs to give invariant functions

When invariance improves a model's generalisation

When invariance increases the marginal likelihood

That invariances exist in real-world problems
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Questions?
Next up: how to learn invariances… 
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Snowflake prior
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Why not just data augmentation?
Used in deep learning… 

Invariances are better:

1. Cubic scaling with number of data points
vs linear scaling with invariances in prior

2. Data augmentation results in same predictive mean, but not variance
3. Invariances in the GP prior give us invariant samples
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Learning Invariances
with the Marginal Likelihood

Mark van der Wilk
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We discussed…

1 How to constrain GPs to 
give invariant functions

2

When invariance increases 
the marginal likelihood

3

When invariance improves 
a model's generalisation

4 That invariances exist in 
real-world problems



From known invariances to learning them

We previously saw that known invariances were useful to modelling.

● How do we exploit invariances in a problem, if we don't know them a-priori?
● Can we learn a useful invariance from the data?



Model selection

● Invariances in a GP are expressed in the kernel

● We use the marginal likelihood to select models

● Parameterising the orbit is all that is left



Parameterising orbits is hard

Strict invariance requires:

which we can obtain using the construction

I don't know how to parameterise orbits!



From orbits to distributions

● We sum over an arbitrary set of points

● Take the infinite limit

● Find kernel

I do know how to parameterise distributions!



Insensitivity
● We lose exact invariance… but this may be a blessing!
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Insensitivity
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What we will do

● Parameterise a distribution that describes the insensitivity

● Use this distribution to define a kernel

● Find invariance in the kernel by optimising the hyperparameters



Obstacles to inference

1. For large datasets, the matrix operations of K
ff

 becomes infeasible (O(N3) time complexity)

2. We may have non-Gaussian likelihoods (classification!)

3. We can't even evaluate the kernel!



Variational inference

1. For large datasets, the matrix operations of K
ff

 becomes infeasible (O(N3) time complexity)

2. We may have non-Gaussian likelihoods (classification!)

3. We can't even evaluate the kernel! Still needed for K
uu

 and k
un



Interdomain inducing variables

● Variational posterior is constructed by conditioning

● Gaussian conditioning requires covariances
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Interdomain inducing variables

● Variational posterior is constructed by conditioning

● Gaussian conditioning requires covariances
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Unbiased estimation of the kernel

Unbiased estimates of μ
n
, μ

n
2, σ

n
2 , give unbiased estimate of the ELBO!



Unbiased estimation of the kernel



Unbiased estimation of the kernel

(We only need to sample one set from pθ(x
a
 | x), see paper for details)

} sample



What we did

● Parameterise a distribution that describes the insensitivity

● Use this distribution to define a kernel

● Approximate the marginal likelihood using the variational evidence lower bound (ELBO)
● Find an unbiased ELBO approximation, using unbiased estimates of the kernel
● Optimise the hyperparameters, using the gradients of the ELBO



Results

● Single model tunes 
itself automatically to 
multiple datasets

● Fire off optimisation 
and watch it go

MNIST

Rotated MNIST



Conclusions & outlook

● We can parameterise invariant kernels
● We can learn the parameters with a marginal likelihood approximation
● Learned invariances improve generalisation
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