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Model the observations as a distorted version of the process
fi = f(xi):
yi ~ N (f(xi), %)
f is anon-linear function, in our case we assume it is latent, and
is assigned a Gaussian process prior.

~—— Realizations of f(z) ® Observations 95% credible intervals for p(y* |y)




So far we have assumed that the latent values, f, have been
corrupted by Gaussian noise. Everything remains analytically
tractable.

Gaussian Prior: f ~ GP(0,Kg) = p(f)

Gaussian likelihood: y~ N H p(yilf;)

Gaussian posterior: p(fly) o« N (ylf, 021) N (£10, Kg)
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You have been given some data you wish to model.
You believe that the observations are connected through

some underlying unknown function.
You know from your understanding of the data generation

process, that the observations are not Gaussian.
You still want to learn, as best as possible, what is the
unknown function being used, and make predictions.
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» p(ylf) is the probability that we would see some random
variables, y, if we knew the latent function values f, which
act as parameters.



» p(ylf) is the probability that we would see some random
variables, y, if we knew the latent function values f, which
act as parameters.

» Given the observed values for y are fixed, it can also be
seen as the likelihood that some latent function values, f,
would give rise to the observed values of y. Note this is a
function of f, and doesn’t integrate to 1 in f.



» p(ylf) is the probability that we would see some random
variables, y, if we knew the latent function values f, which
act as parameters.

» Given the observed values for y are fixed, it can also be
seen as the likelihood that some latent function values, f,
would give rise to the observed values of y. Note this is a
function of f, and doesn’t integrate to 1 in f.

» Often observations aren’t observed by simple Gaussian
corruptions of the underlying latent function, f.



Likelihood

> p(ylf) is the probability that we would see some random
variables, y, if we knew the latent function values f, which
act as parameters.

» Given the observed values for y are fixed, it can also be
seen as the likelihood that some latent function values, f,
would give rise to the observed values of y. Note this is a
function of f, and doesn’t integrate to 1 in f.

» Often observations aren’t observed by simple Gaussian
corruptions of the underlying latent function, f.

» In the case of count data, binary data, etc, we need to
choose a different likelihood function.
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p(ylf) as a function of y, with fixed f
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p(ylf) as a function of f, with fixed y
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» Binary outcomes fory;, y; € [0, 1].

» Model the probability of y; = 1 with transformation of GP,
with Bernoulli likelihood.

» Probability of 1 must be between 0 and 1, thus use
squashing transformation, A(f;) = O(f;).

AME),  ifyi=1
p(yilA(f:) = { 1(_ l\(fi), ;f zi =0

——— Realizations of ®(f(z))

—— Realizations of f(z) ® Observations
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» Non-negative and discrete values only for y;, y; € N.

» Model the rate or intensity, A, of events with a
transformation of a Gaussian process.

» Rate parameter must remain positive, use transformation
to maintain positiveness A(f;) = exp(f;) or A(f;) = fz.2

AVl

yi ~ Poisson(y;|A; = A(f;)) Poisson(yil|A;) = Vi.e"\f
X1

—— Realizations of exp(f(x)) ® Observations 95% credible intervals for p(y* |y)
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42.02

41.90

» Chicago crime counts.

» Same Poisson likelihood.
41.78

» 2D-input to kernel.

41.65 0=
-87.89 -87.77 -87.65 -87.53
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» Exact computation of posterior is no longer analytically
tractable due to non-conjugate Gaussian process prior to
non-Gaussian likelihood, p(ylf).

p(f) TTi p(yilf:)
[p® T, p(yilfi) af

p(tly) =

Why is it so difficult?



at input x;.
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1
y with numerical integration

HA(A)p(f)dfa.

» Consider one observation, y;
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» Can normalise easil
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» Consider one observation, y; = 1, at input x7.
» Can normalise easily with numerical integration,

[pOn = UAR)P(f1)dfi-
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» Consider one observation, y; = 1, at input x;.

» Can normalise easily with numerical integration,

[pOn = UAR)P(f1)dfi-




L0 —— posterior p(fly = 1)

—— likelihood p(y = 1|f)
0.81 —— prior p(f)
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» Now two observations, y; =1 and y» = 1 at x; and x,
> Need to calculate the joint posterior,

p(fly) = p(f1, f2ly1 = L y2 = 1).
» Requires 2D integral

[ [p(1 =1, y2 = LAA), A(R)p(f1, f)dfrdfo.
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» Now two observations, y; =1 and y» = 1 at x; and x,

> Need to calculate the joint posterior,
p(fly) = p(fi, falyr = 1L, y2 = 1).
» Requires 2D integral

/ f POy = 1,y2 = UACR), A(R)P(fi, f)dfidfe.
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» Now two observations, y; =1 and y» = 1 at x; and x,

> Need to calculate the joint posterior,
p(fly) = p(fi, falyr = 1L, y2 = 1).
» Requires 2D integral

[ [p(1 =1, y2 = LAA), A(R)p(f1, f)dfrdfo.
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» To find the true posterior values, we need to perform a two
dimensional integral.
» Still possible, but things are getting more difficult quickly.

Prior p(f1, f2)

A




» To find the true posterior values, we need to perform a two
dimensional integral.
» Still possible, but things are getting more difficult quickly.

Likelihood p(y1 = 1,42 = 1|f1, fo)

—_—




» To find the true posterior values, we need to perform a two
dimensional integral.
» Still possible, but things are getting more difficult quickly.

True posterior p(f1, foly1 = 1,52 = 1)




Generally fall into two areas:

» Sampling methods that obtain samples of the posterior.

» Approximation of the posterior with something of known
form.

Today we will focus on the latter.




» Various methods to make a Gaussian approximation,
p(fly) ~ q(f) = N (flu =2, C =?).

» Only need to obtain an approximate posterior at the
training locations.

» At test locations, the data only effects their probabily via
the posterior at these locations.

p(£, £1x°, x, y) = p(fIf, X" )p(flx, y)



True posterior, posterior approximation, or samples are needed
to make predictions at new locations, x*.

p(EIx, x,y) = f p(E1E, X )p(fly, x)df

A(EN %, y) = f PUEIE, ) (E)E
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Given choice of Gaussian approximation of posterior. How do
we choose the parameter values y and C?

There a number of different methods in which to choose how to
set the parameters of our Gaussian approximation.
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Two approaches that we might take:

» Is to match the mean and variance at some point, for
example the mode.

v

Attempt to minimise some divergence measure between
the approximate distribution and the true distribution.

v

Laplace takes the former

v

Variational bayes takes the latter
EP kind of takes the latter

v
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Task: for some generic random variable, f, and data, y, find a
good approximation to difficult to compute posterior
distribution, p(f|y).

Laplace approach: fit a Gaussian by matching the curvature at
the modal point of the posterior.

» Use a second-order taylor expansion around the mode of
the log-posterior.

» Use the expansion to find an equivalent Gaussian in the
probability space.



» Log of a Gaussian distribution, g(f) = N (flu, C), is a
quadratic function of f.

» A second-order taylor expansion is an approximation of a
function using only quadratic terms.

» Laplace approximation expands the un-normalised
posterior, and then uses it to set the linear and quadratic
terms of the log g(f).

» The first and second derivatives of the form of the
log-posterior, at the mode, will match the derivatives of the
approximate Gaussian at this same point.



p(ily) = (6

In our case: h(f) = p(ylf)p(f)




1
log p(fly) = log = + log h(f)

— logh(n
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1
log p(fly) = log = + log (f)

zlogl+logh(a)+ 03 dlogh@ ; _ )
1 dzlogh(a)
+§(f—a) T( a)+---



dlog
~ log% + log h(a) + %@)(f ~a)

1 ~d*logh(a)

+=(f-a) T2

5 (f—a)+ -

A

Want to make the expansion around the mode, f:

dlogh(a)
da  |p



1 . dlogh(f) .
logp(fly) ~ log  + log i(f) + T(f -9
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1 . dlogh(f)
log p(fly) = log > + log h(f) + T(f f)
d*log h(f) .
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dlog h(f)

1 .
logp(fly) = log  +logi(H) + (1 - f)

1 ATdZIOgh(f) .
#5(E= BT )
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. N d?log h(f
p(ﬂy)z%h(f)exp{—%(f—ff( %”](f f)}
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d%log h(f
p(tly) ~ —h(f)exp |- ”](f f)}
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In our case, h(f) = p(ylf)p(f), so we need to evaluate

_dlogh(f) _ d*(log p(ylf) +log p(b))
e df2
d?1 f
_ ogAp(yIf) e
Fra
LW +K!

giving a posterior approximation:

-1

p(fly) ~ q(f) = N(f|f, (W + k) )



» Find the mode, f of the true log posterior, via Newton’s
method.

» Use second-order Taylor expansion around this modal
value.

» Form Gaussian approximation setting the mean equal to
the posterior mode, f, and matching the curvature.

> plfly) ~ q(fln, ©) = N (£if, (K™' + W) )
» W oa _LlosriiD 10%(“5.
» For factorizing likelihoods (most), W is diagonal.
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-10.0
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—— log prior, logp(f)
—— log likelihood, logp(y = 4|A(f))
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—— log prior, logp(f)
—— log likelihood, logp(y = 4|A(f))
=== log posterior, logp(fly = 4)
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Evaluate curvature



—— log prior, logp(f)
—— log likelihood, logp(y = 4|A(f))
=== log posterior, logp(fly = 4)

Evaluate cyrvature
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prior, p(f)

likelihood, p(y = 4|A(f))
posterior, p(fly = 4)
laplace, q(f)

mode, f
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Task: for some generic random variable, z, and data, y, find a
good approximation to difficult to compute posterior
distribution, p(z[y).

VB approach: minimise a divergence measure between an
approximate posterior, g(z) and true posterior, p(z|y).

» KL divergence, KL (4(2) || p(z|y)).
» Minimize this with respect to parameters of 7(z).



» General for any two distributions q(x) and p(x).

» KL (q(x) |l p(x)) is the average additional amount of
information lost when p(x) is used to approximate q(x). It’s
a measure of divergence of one distribution to another.

= 1%
> KL (g0 lp(0) = (log 335)
» Always 0 or positive, not symmetric.

» Lets look at how it changes with response to changes in the
approximating distribution.
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— q(x) ~ N(1=0.0,0° =0.725)

==+ p(x) ~ N(0.0,1.0)
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— q(x) ~ N(p=0.0,0° =1.575)

==+ p(x) ~ N(0.0,1.0)
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Don’t have access to or can’t compute for computational
reasons: p(z|y) or p(y), and hence KL (q(z) || p(z|y))

How can we minimize something we can’t compute?

» Can compute g(z) and p(y|z) for any z.
» q(z) is parameterised by ‘variational parameters’.

pyl2)p(z)
P
» p(y) doesn’t change when variational parameters are

changed.

» True posterior using Bayes rule, p(z[y) =



KL (q(2) I p(zly))



KL (q(2) lp(zly))

_ q(z)
_f 1) [log p(zly) dz




KL (q(2) I p(zly))
B q(z)
_f 1) [log p(zly) 4z

= f q(2) [m;;}% —logp(ylz) + logp(y)|dz




KL (q(2) I p(zly))
_ q(z)
_f 1) [log p(zly) dz

= f q(2) [m;;}% —logp(ylz) + logp(y)|dz

=KL (9(2) I p(2)) - f q(z) [log p(ylz)] dz + log p(y)



KL (q(2) I p(zly))
_ q(z)
_f 1) [log p(zly) dz

= f q(2) [m}% —logp(ylz) + logp(y)|dz

=KL (9(2) I p(2)) - f q(z) [log p(ylz)] dz + log p(y)

logp(y) = f q(z) [log p(ylz)] dz — KL (q(2) l| p(2)) + KL (q(2) | p(zly))



logp(y) = f q(z) [log p(ylz)] dz — KL (q(2) l| p(2)) + KL (q(2) | p(zly))

> f q(z) [log p(ylz)] dz = KL (9(z) || p(2))

» Tractable terms give lower bound on log p(y) as
KL (9(z) || p(zly)) always positive.
» Adjust variational parameters of g(z) to make tractable

terms as large as possible, thus KL (4(z) || p(z|y)) as small as
possible.
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» Make a Gaussian approximation, g(f) = N (f|u, C), as
similar possible to true posterior, p(fly).

» Treat p and C' as “variational parameters’, effecting quality
of approximation.

q(f) >
KL (q(f) || p(fly)) = (1
(q(H) | p(fly)) <0g PEW) |6

_ <log T _togp(ylf) + log p(y)>
p() q(f)

=KL (g [1p(H) — log p(ylf)) ¢ + l0g p(y)
log p(y) = (log p(ylf)) ¢ — KL (q(5) I p(£)) + KL ((F) l| p(fly))



log p(y) = (log p(ylf)) e — KL (q(F) Il p(£)) + KL (4(f) I p(fly))
2 (log p(ylf)), ) — KL (q(f) I p(£))

» Adjust variational parameters px and C' to make tractable
terms as large as possible, thus KL (4(f) || p(fly)) as small as
possible.

> (log p(ylf)), with factorizing likelihood can be done with
a series of n 1 dimensional integrals.

» In practice, can reduce the number of variational
parameters by reparameterizing C = (Kg —2A)~! by noting
that the bound is constant in off diagonal terms of C.
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p(ely) < p(6) [ | piyilfi
i=1

REER - S
706 = 7-p(D) H H(E\Z;, 1,52 = N (i, )

ti2 ZiN (filfii, 57)

» Individual likelihood terms, p(yilf;), replaced by

independent un-normalised 1D Gaussians, t;
» Uses an iterative algorithm to update t;’s, to get more and

more accurate approximation.



1. Remove one factor ¢; from the approximation g(f).



1. Remove one factor ¢; from the approximation g(f).

2. The approximate marginal g(f;) with t; contribution
removed is called cavity distribution, q_;(f;)



1. Remove one factor ¢; from the approximation g(f).

2. The approximate marginal g(f;) with t; contribution
removed is called cavity distribution, q_;(f;)

3. Find t; that minimises KL (p(yilf:)q-i(f:)/zi | q(£:)) by
matching moments.



1. Remove one factor ¢; from the approximation g(f).

2. The approximate marginal g(f;) with t; contribution
removed is called cavity distribution, q_;(f;)

3. Find t; that minimises KL (p(yilf:)q-i(f:)/zi | q(£:)) by
matching moments.

4. Repeat until convergence.



1. Remove one factor ¢; from the approximation g(f).

2. The approximate marginal g(f;) with t; contribution
removed is called cavity distribution, q_;(f;)

3. Find t; that minimises KL (p(yilf:)q-i(f:)/zi | q(£:)) by
matching moments.

4. Repeat until convergence.

This approximately minimises KL (p(fly) || (f)) locally, but not
globally.



Step 1 & 2. First choose a local likelihood contribution, i, to
leave out, and find the marginal cavity distribution,

’ PO TT (6) .
attly) o pth) [ [ 116 > —— 55—~ pO [ [ 66
j=1

j#i

N fp(f) H t]‘(fj) df]';#i 2 q_i(f;)

j#i



Step 1 & 2. First choose a local likelihood contribution, i, to
leave out, and find the marginal cavity distribution,

L p(6) Ty 1(67)
q(fly)ocp(f)]‘[t,-(fj)eT] (f)Ht;(f)
j=1 ! ji
= [ [Tty 0.6
j#i

Step 3.1. 4(f)) ~ min KL (p(yilf)q-i(£) | N (£ilfii, 62) 2:)



Step 1 & 2. First choose a local likelihood contribution, i, to
leave out, and find the marginal cavity distribution,

Z p(6) T, () n
attly) o pth) [ [ 116 > —— 55—~ pO [ [ 66
=1

j#L
= [ [Tty 0.6
j#i
Step 3.1. 4(f;) ~ min KL (p(yilf)g-i(£) I N (filfii, 62) Z;)

Step 3.2: Compute parameters of #;(£iZ;, fi;, 57) making
moments of g(f;) match those of ZiN (fil i, 6'1.2).



Approximate methods
Laplace approximation
Variational bayes
Expectation propagation

Comparisons



Prior p(f1,f2)

Likelihood p(y =1|f,,f,)

» Gaussian prior between two function values {f;, f,}, at
{x1, x2} respectively.
» Bernoulli likelihood, y; =1 and y, = 1.



True posterior

Laplace approximation

f)p(f
> plfly) o EETHD

» True posterior is non-Gaussian.

» Laplace approximates with a Gaussian at the mode of the
posterior.



KL approximation

True posterior

» True posterior is non-Gaussian.

» VB approximate with a Gaussian that has minimal KL
divergence, KL (q(f) | p(fly)).

» This leads to distributions that avoid regions in which
p(fly) is small.

» It has a large penality for assigning density where there is
none.



True posterior

EP approximation

» True posterior is non-Gaussian.
» EP tends to try and put density where p(fly) is large

» Cares less about assigning density density where there is
none. Contrasts to VB method.



Marginals for f, compared

— laplace
— posterior
012 — ep
— KL

» Laplace: Poor approximation.

» VB: Avoids assigning density to areas where there is none,
at the expense of areas where there is some (right tail).

» EP: Assigns density to areas with density, at the expense of
areas where there is none (left tail).



Laplace approximation

» Pros

» Simple to implement.
» Fast.

» Cons
» Poor approximation if the mode does not well describe the
posterior, for example Bernoulli likelihood.

» When

» When the posterior is well characterized by its mode, for
example Poisson.



Variational Bayes

» Pros
» Principled in that it we are directly optimizing a measure of
divergence between an approximation and true
distribution.
» Lends itself to sparse extensions.
» Cons
» Requires factorizing likelihoods to avoid n dimensional
integral.

» As seen, can result in underestimating the variance, i.e.
becomes overconfident.

» When

» Applicable to a range of likelihood
» Might need to be careful if you wish to be conservative with
predictive uncertainty.



EP method

» Pros
» Very effective for certain likelihoods (classification).
» Also lends itself to sparse approximations.
» Cons
» Standard algorithm is slow; though possible to extend to
sparse case.
» Not always guaranteed to converge.
» Can be brittle with initialisation and tricky implement.
» When

» Binary data (Nickisch and Rasmussen, 2008; Kuf3, 2006),
perhaps with truncated likelihood (censored
data) (Vanhatalo et al., 2015).

> In conjunction with sparse methods.



MCMC methods

» Pros

» Theoretical limit gives true distribution.
» Cons

» Can be very slow.
» When

» If time is not an issue, but exact accuracy is.
» If you are unsure whether a different approximation is
appropriate, can be used as a “ground truth”



» Many real world tasks require non-Gaussian observation
models.

» Non-Gaussian likelihoods cause complications in applying
our framework.

» Several different ways to deal with the problem. Many are
based on Gaussian approximations.

» Different methods have their own advantages and
disadvantages.



Thanks for listening.

Any questions?



—4 . . . . . . . .
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» Likelihood whos parameters are governed by two known
functions, f and g.

> p(ylf, 8) = N (ylu = £,0% = exp(g))



Standard Gaussian Process Heteroscedastic Gaussian Heteroscedastic Student-t

» Likelihood whos parameters are governed by two known
functions, f and g.

> p(ylf, g) = tylu =1, 0?2 = exp(g), v = 3.0)
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