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Motivation: Temporal models

® One-dimensional problems
(the data has a natural ordering)

© Spatio-temporal models
(something developing over time)

® Long/ unbounded data
(sensor data streams, daily observations, etc.)
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Kernel (moment) representation

f(t) ~ GP(u(t), x(t, t'))  GP prior
ylf~]]pwilf(1) likelihood
i

> Let’s focus on the GP prior only.

> A temporal Gaussian process (GP) is a random function f(t), such that
joint distribution of f(t), ..., f(t,) is always Gaussian.

» Mean and covariance functions have the form:
u(t) = E[f(1)],
K(t, 1) = E[(f(t) — (1) (F(t') — u(t))"].

> Convenient for model specification, but expanding the kernel to a
covariance matrix can be problematic (the notorious O(n®) scaling).
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Spectral (Fourier) representation

The Fourier transform of a function f(t) : R — R is
Flf](iw) = / (t) exp(—iw 1) dt
R

For a stationary GP, the covariance function can be written in terms of
the difference between two inputs:

k(tt') 2 k(t—1t)

Wiener—Khinchin: If f(t) is a stationary Gaussian process with
covariance function «(t), then its spectral density is S(w) = Flx].

Spectral representation of a GP in terms of spectral density function

S(w) = E[f(iw) FT(—iw)]

State space methods for temporal GPs
Arno Solin
6/44



State space (path) representation [1/3]

Path or state space representation as solution to a linear time-invariant

(LT1) stochastic differential equation (SDE):
df = Ffdt + Ldg,

where f = (f,df/dt,...) and 3(t) is a vector of Wiener processes.
Equivalently, but more informally

df(t) _
g = Fi() + Lw(1),

where w(t) is white noise.

The model now consists of a drift matrix F € R™*™, a diffusion matrix
L € R™®, and the spectral density matrix of the white noise process
Q. € R,

The scalar-valued GP can be recovered by f(t) = h" f(t).
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State space (path) representation [2/3]

» The initial state is given by a stationary state f(0) ~ N(0, P,) which
fulfils
FP.+P.F +LQ.L"=0

» The covariance function at the stationary state can be recovered by

(t.1) h™P. exp((t' —t)F)'h, t' >t

k(1 = ,
h'exp((f' — t)F)Poch, t' <t

where exp(-) denotes the matrix exponential function.

» The spectral density function at the stationary state can be recovered by

S(w)=h"(F+iwl)'LQ;L"(F—iwl)""h
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State space (path) representation [3/3]

Similarly as the kernel has to be evaluated into a covariance matrix for
computations, the SDE can be solved for discrete time points {#}7_,.

The resulting model is a discrete state space model:
fi=A_1fi_1+ai—1, q ~N(0,Q),

where f; = f(t)).
The discrete-time model matrices are given by:

A; = exp(F At),
At
Q = / exp(F (At — 7))L Q¢ L' exp(F (At — T))T dr,
0
where At = ti 4 —
If the model is stationary, Q; is given by

Q; =P, — AP Af
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Three views into GPs
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Example: Exponential covariance function

» Exponential covariance function (Ornstein-Uhlenbeck
process):
k(t, V) = exp(=A|t —t])

» Spectral density function:

2

S =N an

» Path representation: Stochastic differential equation (SDE)

df(t)
dt
or using the notation from before:
F=-)\L=1,Q=2h=1,and P, = 1.

= X (E) + w(D),
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Examples of applicable GP priors

Constant Linear Wiener process Wiener velocity

Exponential
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Applicable GP priors

The covariance function needs to be Markovian (or
approximated as such).
Covers many common stationary and non-stationary
models.
Sums of kernels: k(t, t') = r1(t, t') + ra(t, t)

e Stacking of the state spaces

e State dimension: m=my + mo
Product of kernels: x(t,t') = rq(t, V') ka(t, t')

e Kronecker sum of the models

e State dimension: m= my mo
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Example: GP regression, O(n®)
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Example: GP regression, O(n®)
» Consider the GP regression problem with input—output
training pairs {(;, yi)}7_+
f(t) ~ GP(0, (1, 1)),
yi=f(t)+ei, e ~N(0,05)

» The posterior mean and variance for an unseen test input
t, is given by (see previous lectures):

E[f.] = k. (K+ a2 D)7y,
V[f] = Kix — Ko (K+021)7Tk!

» Note the inversion of the n x n matrix.
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Example: GP regression, O(n®)
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Example: GP regression, O(n)

The sequential solution (goes under the name ‘Kalman filter’) considers
one data point at a time, hence the linear time-scaling.

Start from my = 0 and Py = P, and for each data point iterate the
following steps.

Kalman prediction:
mj;_ =A_1mi_q_q,
Piit =Ai 1Pyt Al + Q1.
Kalman update:
Vi=yi—h'my_4,
Si=h"Pj_1h+d3,
Ki=Py_1hS ™,
m;; = m;;_¢ + K v,
Pji=Pji_1 — Ki SIK[.
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Example: GP regression, O(n)

> To condition all time-marginals on all data, run a backward sweep
(Rauch—Tung—Striebel smoother):

miq; = Aimy;,
Pii1i = AiPy; Al +Q,
G, =P;; AP}

i+11i>
mjj, = mjj; + Gj (Mis1)p — Migq)),
Piin = Pjji + Gi (Pir1n — Piyi) G/ ,
» The marginal mean and variance can be recovered by:
E[f] = h'my,,
V[f] = h"P;,h

» The log marginal likelihood can be evaluated as a by-product of the
Kalman update:

1 -
log p(y) = —§Z|og|27r S|+v Sy

i=1
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Example: GP regression,

O(n)
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Basic regression example

» Number of births in the US (from BDA3 by Gelman et al.)
» Daily data between 1969-1988 (n = 7305)
» GP regression with a prior covariance function:

K(t 1) = ki (4 1) + k=2 (8, 1)
v=3/2

R E) kISP kBN ) k(1 )

» Learn hyperparameters by optimizing the marginal
likelihood
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Basic regression example
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Connection to banded
precision matrices
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Precision matrices

Covarlance (Gram) matrix: Precision matrix:
= r(X, X) K-

For Markovian models the precision is sparse!
(block tri-diagonal)

see Durrande et al. (2019)

State space methods for temporal GPs
Arno Solin
22/44



Constructing the precision matrix

» The full precision matrix can be constructed from the state
space model matrices:

1 0 0 .. 0\ [P0 0O ... .. O\ /1 0 o .. o'
A, I 0 ... 0 0Q 0 ... 0 A, I 0 ... 0
0 A, I ... 0 C 0 Q@ : 0 A, I ... 0
S A P o R
0o o —A, |

0 0 ... A I 0 0 ... ... Q,

» Discarding the other model states by passing through the
measurement model:

K=, @h) K (I,®h)T
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General likelihoods
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Non-Gaussian likelihoods

» The observation model might not be Gaussian
f(t) ~ GP(0, k(t,t'))
ylf~]]pwil (1)
» There exists a multitude of great methods to tackle general likelihoods
with approximations of the form
Q(f | D) =N(f | m+ Koy, (K™ + W)™

> Use those methods, but deal with the latent using state space models
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Inference

Laplace approximation

Variational Bayes

Direct KL minimization

EP or Assumed density filtering (Single-sweep EP)

Can be evaluated in terms of a (Kalman) filter forward and
backward pass, or by iterating them
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Example

Commercial aircraft accidents 1919-2017

Log-Gaussian Cox process (Poisson likelihood) by ADF/EP
Daily binning, n = 35,959

GP prior with a covariance function:

K1 1) = w26 8) + RE2(81) e 2(8 1) + rped (8,1 e 21, 1)

Learn hyperparameters by optimizing the marginal
likelihood
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Month
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Example
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Spatio-temporal
Gaussian processes
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Spatio-temporal GPs

f(x) ~ GP(0, k(x,x"))
y[f~ HP(Y/ | F(x7))

f(r,t) ~ GP(0, s(r, t; ¥, t'))
y|f~ HP(Y/ | F(ri, 1)
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Spatio-temporal Gaussian processes

Covariance
k(z, t;2’,t))

GPs under the kernel formalism

f(x, 1) ~ GP(0, k(x, t;x', "))
yi=f(X;, ti) + &

Stochastic partial differential equations The state at time ¢
% =Fi(x, t) + Lw(x,t1)

Yi= ’qu(X, t) + €
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Spatial dimension, x

Spatio-temporal GP regression
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Temporal dimension, ¢
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Spatial dimension, x

Spatio-temporal GP regression

S
Estimate mean, E[f (¢, z)]

Temporal dimension, ¢
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Spatio-temporal GP priors

Matérn (v = 1) Matérn (v = 2)

Time, ¢ Time, t

Squared exponential Separable Matérn (v = 3/2)

Time, ¢ Time, t

Separable exponential Separable periodic

Time, ¢ Time, t
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Application examples
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What if the data really is infinite?

Class label
T predigions | ]

Time
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Adapting the hyperparameters online

https://youtu.be/myCvUT3XGPc
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Online inference as a part of a larger system

» Single-camera depth
estimation

» An infinite stream of
camera frames

» An unholy alliance

between deep learning
and GPs

!-\ !-\ H !-\
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Online inference as a part of a larger system

=

Previous Frame

Global translation:
-0.29m

+0.03m
-011m

Global orientation:
-36.8°

-18.1°

+1.4°

https://youtu.be/iellGrlNW7k
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Recap
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Gaussian processes € SDEs

GPs under the kernel formalism

f(t) ~ GP(0, x(t, 1))
y|f~ Hp(yi | (1))

Flexible model Inference /
specification First-principles
Stochastic differential equations

df(t) = Ff(t) + LdB(1)
i ~ p(yi | h'(t))
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Recap

Gaussian processes have different representations:
e Covariance function e Spectral density e State space

Temporal (single-input) Gaussian processes
<> stochastic differential equations (SDEs)

Conversions between the representations can
make model building easier

(Exact) inference of the latent functions, can be done in
O(n) time and memory complexity by Kalman filtering
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