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Causal decision-making

Integrate causal considerations into a choice process and take decisions
based on causal knowledge [Hagmayer and Fernbach (2017)].

Why is this important?
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Systems/processes decompose in sets of interconnected nodes
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Figure 1: Causal Graph for Crop Yield. Nodes denote variables, arrows
represent causal effects and dashed edges indicate unobserved confounders.
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Systems/processes decompose in sets of interconnected nodes
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Figure 2: Causal Graph for Net Ecosystem Calcification (NEC). Dotted nodes
represent non-manipulative variables.
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Systems/processes decompose in sets of interconnected nodes
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Figure 3: Causal Graph for Prostate Specific Antigen (PSA) level. Dotted
nodes represent non-manipulative variables.
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Common elements in these examples

• A causal graph (Directed Acyclic Graph - DAG).

• Observational data from all (non hidden) nodes.

• Ability of running experiments (in reality or in simulation).

• Cost of experiments depends on the number and type of nodes in
which we intervene.

Research goal

Efficiently find the system configuration that optimises the target node.
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Research Goal

Research goal

Efficiently find the system configuration that optimises the target node.

• System configuration → manipulative variables to be intervened on
and their intervention levels e.g. Soil fumigants, CO2, Statin.

• Target node → variable in the causal graph that we wish to optimize
considering its causal relationships e.g. Crop yield, NEC, PSA.

• Efficiently → exploit all information, observational and interventional,
that we collect when exploring the system.
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Questions to answer
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• How can I learn the expected crop
yield given different interventions?

• How can I learn the optimal
intervention that is the intervention
maximizing the the crop yield?

• I have observed the crop yield over
seasons and have previously
intervened on soil fumigants. How
can I integrate this information to
infer the crop yield I would get by
intervening on soil fumigants and
eelworm t?
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Research Goal

Research goal

Efficiently find the system configuration that optimises the target node.

1. Perform experiments

2. Integrate interventional and observational data

3. Transfer interventional information.
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Causal models and do-calculus



Causal models and do-calculus (1 of 3)

Causal model: DAG G + four-tuple 〈U,V,F ,P(U)〉

• U: independent exogenous background variables.

• P(U) distribution of U.

• V: endogenous variables (non-manipulative, manipulative, target).

• F = {f1, ..., f|V|}: functions vi = fi (pai , ui ), pai are the parents of Vi .

X Y

C
C = fc(Uc), Uc ∼ N (0, σ2

c )

X = fx(C ,Ux), Ux ∼ N (0, σ2
x )

Y = fy (X ,C ,Uy ), Yc ∼ N (0, σ2
y )
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Causal models and do-calculus (2 of 3)

Intervention: Setting a manipulative variable X to a value x , do(X = x).

Observed universe

X Y

C

C = fc(Uc)

X = fx(C ,Ux)

Y = fy (X ,C ,Uy )

P(X ,C ,Y )

Post-intervention universe

X = x Y

C

C = fc(Uc)

X = x

Y = fy (x ,C ,Uy )

Pdo(X=x)(C ,Y )

P(Y |do(X = x)) := Pdo(X=x)(Y |X = x)
10



Causal models and do-calculus (3 of 3)

Key question: How to do inference in the post-intervention universe?

• Intervene → Interventional data → P(Y |do (X = x))

• Observe → Observational data → do-calculus → P̂(Y |do (X = x))

do-calculus: algebra to emulate the post-intervention universe in terms of
conditionals P(Y |X = x) in the observed universe.

X Y

C

Back-door adjustment: p(Y |do(X = x)) =
∫
P(Y |c ,X = x)P(c)dc .
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Causal Optimization

X?s , x
?
s = arg min

Xs∈P(X)
xs∈D(Xs )

E[Y |do (Xs = xs)] (1)

• P(X) gives all possible interventions.

• D(Xs) fixed interventional domain for each Xs .

• Xs , xs one possible intervention set and value.

• X?s , x?s , optimal intervention set and value.
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Gobal optimization vs. Causal optimization

Causal optimization

X?s , x
?
s = arg min

Xs∈P(X)
xs∈D(Xs )

E[Y |do (Xs = xs)]

• Explore P(X)

• Find the intervention set and
the intervention level

B C

A E

D

Y

Global optimization

x? = arg min
x∈D(X)

E[Y |do (X = x)]

• Set the intervention set to X

• Find the intervention level

B E D A C

Y
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Solving Global Optimization

• Target function f is explicitly unknown and multimodal.

• Evaluations of f are perturbed by noise.

• Evaluations of f are expensive.

Bayesian Optimization
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Bayesian optimization

• Goal: Collect data x1, . . . , xn to find the optimum as fast as possible.

• Model: Gaussian process f (x) ∼ GP(µ(x), kθ(x , x ′)).

• Acquisition: αEI (x; θ,D) =
∫
y

max(0, ybest − y)p(y |x; θ,D)dy

Each point xn+1 is collected as xn+1 = arg maxαEI (x; θ,Dn)
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Solving Causal Optimization

• Target function f is explicitly unknown and multimodal.
• Evaluations of f are perturbed by noise.
• Evaluations of f are expensive.

+
• Causal graph

Causal Bayesian Optimization
(CBO)

Idea: Run interventions (Xs1 , xs1), . . . , (Xsn , xsn) to find the optimum as
fast as possible.
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Do we need to explore all 2|X| sets in P(X)? NO!

X?s , x
?
s = arg min

Xs∈P(X)
xs∈D(Xs )

E[Y |do (Xs = xs)]

Minimal Intervention Set (MIS, MC
G,Y )

Given 〈G,Y,X,C〉, a set Xs ∈ P(X) is said to be a MIS if there is no
X′s ⊂ Xs such that E[Y |do (Xs = xs) ,C] = E[Y |do (X′s = x′s) ,C].

Possibly-Optimal Minimal Intervention set (POMIS, PC
G,Y )

Let Xs ∈MC
G,Y . Xs is a POMIS if there exists a sem conforming to G

such that E[Y |do (Xs = x∗s ) ,C] > ∀W∈MC
G,Y \Xs

E[Y |do (W = w∗) ,C]

where x∗ and w∗ denote the optimal intervention values.

MIS and POMIS are sets of variables ‘worth’ intervening on.
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Causal Bayesian Optimization



Toy example

X Z Y

X = εX

Z = exp(−X ) + εZ

Y = cos(Z )− exp(− Z

20
) + εY

MG,Y = {∅, {X}, {Z}}
PG,Y = {{Z}}
BG,Y = {{X ,Z}}
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Modelling E[Y|do (Xs = xs)] for each Xs with Causal GP prior

f (xs) ∼ GP(m(xs), k(xs , x′s))

m(xs) = Ê[Y |do (Xs = xs)]

k(xs , x′s) = kRBF (xs , x′s) + σ(xs)σ(x′s)

where

• kRBF (xs , x′s) := exp(− ||xs−x′s ||
2

2l2 )

• σ(xs) =
√
V̂(Y |do (Xs = xs)) with V̂ is the variance of the causal

effects estimated from observational data.
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Modelling E[Y|do (Xs = xs)] for each Xs with Causal GP prior

Standard GP prior: f (xs) ∼ GP(m(xs), k(xs , x′s)), m(xs) = 0 and
k(xs , x′s) = kRBF (xs , x′s) with kRBF (xs , x′s) := exp(− ||xs−x′s ||

2

2l2 ).
20



Solving the exploration-exploitation trade-off

Causal Expected Improvement

• ys = E[Y |do (Xs = xs)]

• y? = maxXs∈es,x∈D(Xs ) E[Y |do (Xs = xs)]

EI s(x) = Ep(ys )[max(ys − y?, 0)]/Co(Xs , xs)

• α1, . . . , α|es|: solutions of optimizing EI s(x) for each set in es and

New intervention set and value

α? := max{α1, . . . , α|es|}

s? = argmax
s∈{1,··· ,|es|}

αs
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Solving the intervention-observation trade-off

ε-greedy criteria

ε =
Vol(C(DO))

Vol(×X∈X(D(X )))
× N

Nmax
,

• Vol(C(DO)): volume of the convex hull for observational data.
• Vol(×X∈X(D(X ))): volume of the interventional domain.
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Causal Bayesian Optimization - CBO

Algorithm: Causal Bayesian Optimization
Data: DO, DI, G, es, number of steps T
Result: X?s , x?s , Ê[Y?|do (X∗s = x?s )]

Initialise: Set DI
0 = DI and DO

0 = DO

for t=1, ..., T do
Compute ε and sample u ∼ U(0, 1)

if ε > u then
(Observe)
1. Observe new observations (xt , ct , yt).
2. Augment DO = DO ∪ {(xt , ct , yt , )}.
3. Update prior of the causal GP.

end
else

(Intervene)
1. Compute EI s(x) for each element
s ∈ es.
2. Obtain the optimal interventional
set-value pair (s?, α?).
3. Intervene on the system.
4. Update posterior of the interventional
GP.

end
end
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Simulation analysis

• Results are consistent with what is expected.

• Better results that BO: propagation of effect beyond default domain.
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Take home messages:

1. Many real systems decompose in interconnected nodes.

2. Optimization requires ‘intervening’ in the manipulative nodes
and solving a Causal Optimization problem.

3. Standard Bayesian Optimization ignores causal assumptions.

4. CBO solves Causal Optimization problems and improves BO
when causal information is available.

5. CBO efficiently explores ‘worthy’ interventions.

6. Causal GPs prior merges observational and interventional data.
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Limitations of CBO

• The number of GPs we require is determined by |P(X)| which is
potentially huge.

• We don’t transfer interventional information across GPs e.g. we don’t
account for the fact that intervening on X might give us some
information about an intervention on X and Z.
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Limitation of CBO

X Z Y

MG,Y = {∅, {X}, {Z}}

• fX (x)

• fZ (z)

• fX ,Z (x , z)
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Limitation of CBO

• The number of GPs we require is determined by |P(X)| which is
potentially huge.

• We don’t transfer interventional information across GPs e.g. we don’t
account for the fact that intervening on X might give us some
information about an intervention on X and Z.

Research goal

Efficiently find the system configuration that optimises the target node.

Methodology to transfer interventional information.
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Research goal

We aim at learning the set of intervention functions for Y in G:

T = {ts(x)}|P(X)|
s=1 ts(x) = fs(x) = Ep(Y |do(Xs=x))[Y ] = E[Y |do (Xs = x)].

given DO = {xn, yn}Nn=1 and DI = (XI ,YI ) with XI =
⋃

s{xIsi}
N I

s

i=1 and

YI =
⋃

s{y I
si}

N I
s

i=1.

⇓

Goal

Define p(T) and compute p(T|DI ) so as to make probabilistic
predictions for T at some unobserved intervention sets and levels.
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Steps in the methodology

1. Study the correlation among functions in T = {fs(x)}|P(X)|
s=1 which

varies with the topology of G.
2. Define a joint prior distribution p(T).

3. Develop a multi-task model based on p(T) so as to compute the
posterior p(T|DI ).
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1. Study the correlation among intervention functions

Any function in T can be written as an integral transformation of some
base function f , via some causal operator Ls such that
ts(x) = Ls(f )(x), ∀Xs ∈ P(X) (Theorem 3.1):

Ls(f )(x) =

∫
· · ·
∫
πs(x, (vNs , c))f (v, c)dvNs dc,

• f (v, c) = E
[
Y |do (I = v) ,CN = c

]
• CN is the set of variables in G that are directly confounded with Y

and are not colliders.

• I is the set Pa(Y ).

• πs(x, (vNs , c)) = p(cIs |cNs )p(vNs , cNs |do (Xs = x)) is the integrating
measure for the set Xs .
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1. Study the correlation among intervention functions
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1. Study the correlation among intervention functions

• (a) I = {Z}, CN = ∅
• (b) I = {E ,D}, CN = {A,B}
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2. Define a joint prior p(T)

ts(x) = Ls(f )(x), ∀Xs ∈ P(X)

We can define a prior for T by:

• Step (1): placing a causal prior on f

• Step (2): propagating this prior through Ls(·) for all ts(x)
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2. Define a joint prior p(T)

• Step (1): Placing a causal prior on f (v, c) = f (b)

f (b) ∼ GP(m(b),K (b,b′))

with m(b) = f̂ (b) and K (b,b′) = krbf(b,b′) + σ̂(b)σ̂(b′) where

f̂ (b) = f̂ (v, c) = Ê[Y |do (I = v) , c]

σ̂(b) = σ̂(v, c) = V̂[Y |do (I = v) , c]1/2

where V̂ and Ê represent the variance and expectation of the causal effects
estimated from DO using do-calculus.
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2. Define a joint prior p(T)

• Step (2): propagating this prior through Ls(·) for all ts(x)

For each Xs ∈ P(X), we have ts(x) ∼ GP(ms(x), ks(x, x′)) with:

ms(x) =

∫
· · ·
∫

m(b)πs (x,bs) dbs

ks(x, x′) =

∫
· · ·
∫

K (b,b′)πs (x,bs)πs (x′,b′s) dbsdb′s .

where bs = (vNs , c) is the subset of b including only the v values
corresponding to the set INs .
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The DAG-GP model

Joint prior distribution: TD ∼ N (mT(D),KT(D,D))

Likelihood function: p(YI |TI , σ2) = N (TI , σ2I).

Joint posterior distribution: TD |DI ∼ N (mT|DI (D),KT|DI (D,D))

with mT|DI (D) = mT(D) + KT(D,XI )[KT(XI ,XI ) + σ2I](TI −mT(XI ))

and KT|DI (D,D) = KT(D,D)− KT(D,XI )[KT(XI ,XI ) + σ2I]KT(XI ,D).
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A helicopter view

do-calculus
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Single-task Multi-task

p(T ) =
∏

s
p(ts(x))

ts(x) ∼ GP(0,KRBF (x,x
′))

p(T ) =
∏

s
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ts(x) ∼ GP(m+(x),K+(x,x′))

f(b) ∼ GP(m+(b),K+(b,b′))

p(T) =
∏
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p(ts(x)|f)

f(b) ∼ GP(0,KRBF (b,b
′))
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∫
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Interventional data

ts(x) =
∫
f(b)πs(x,bs)dbs

Figure 6: Models for learning the intervention functions T defined on a dag.
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Learning intervention function from data

Figure 7: Posterior mean and variance for tX (x) = fX (x).
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DAG-GP as surrogate model in CBO

Figure 8: Convergence of the CBO algorithm to the global optimum
(E[Y ?|do (Xs = x)]) when a single-task or a multi-task GP model are used as
surrogate models.
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DAG-GP as surrogate model in CBO

Figure 9: Convergence of the CBO algorithm to the global optimum for PSA
(E[PSA?|do (Xs = x)]) when a single-task or a multi-task GP model are used as
surrogate models.
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Take home messages:

1. The DAG-GP allows to efficiently learn the causal effects in a
graph and identify the optimal intervention to perform

2. It captures the non-trivial correlation structure across different
experimental outputs.

3. It enables proper uncertainty quantification and can be used
within decision-making algorithm to choose experiments to
perform.
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Thanks for your attention!
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