Variational Gaussian Processes

Zhenwen Dai

Spotify

15 September 2020 @GPSS 2020
o <5 = = Da



Gaussian process
Input and Output Data:

y:(yla"-7yN)7 X:(Xl,...,XN)T

p(y[f) =N (ylf,o’T), p(£]X) = N (£]0. K(X, X))
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Behind a Gaussian process fit

@ Maximum likelihood estimate of the hyper-parameters.

¢* = arg maxlog p(y|X, ) = arg maxlog NV (y|0, K + ¢°I)
0 0

@ Prediction on a test point given the observed data and the optimized
hyper-parameters.

p(f* |X*7 Yy, X7 8) =
N (£ K. (K +0’) 'y, K.. — K.(K+0’I)'K])
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How to implement the log-likelihood (1)

@ Compute the covariance matrix K:

k‘(Xl,Xl) k‘(Xl,XN)
K=

k(xn,x1) -+ k(xXy,Xn)

where k(x;,x;) = vexp (—gz(x; — x;) T (x; — x;))

@ The complexity is O(N2Q).
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How to implement the log-likelihood (2)

@ Plug in the log-pdf of multi-variate normal distribution:
log p(y|X) =log N (y|0,K + ¢°I)
1 1
=-3 log |27(K + o°T)| — §yT(K + 0’1y

1
=— §(||L_1y||2 + Nlog2m) — ZlogLii

@ Take a Cholesky decomposition: L = chol(K + o°I).

@ The computational complexity is O(N?3 + N? + N). Therefore, the overall
complexity including the computation of K is O(N?).
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A quick profiling (N=1000, )=10)
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def

Line Contents

log_likelihood(kern, X, Y, sigma2):
N = X.shape[0]

K = kern.K(X)

Ky = K + np.eye(N)*sigma2

L = np.linalg.cholesky(Ky)

LinvY = dtrtrs(L, Y, lower=1) [0]
logL = N#*np.log(2*np.pi)/-2.

logl += np.square(LinvY).sum()/-2.
logL += -np.log(np.diag(L)).sum()
return logL
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Empirical analysis of computational time

@ | collect the run time for N = {10, 100, 500, 1000, 1500, 2000}.
@ They take 1.3ms, 8.5ms, 28ms, 0.12s, 0.29s, 0.76s.
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What if we have 1 million data points?

The mean of predicted computational time is 9.4 x 107 seconds ~ 2.98 years.
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What about waiting for faster computers?

e Computational time = amount of work / computer speed.
@ If the computer speed increase at the pace of 20% year over year:

» After 10 years, it will take about 176 days.
» After 50 years, it will take about 2.9 hours.
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What about parallel computing / GPU?

@ Ongoing works about speeding up
Cholesky decomposition with multi-core
CPU or GPU.

@ Main limitation:

» heavy communication and shared
memory.
» O(N?) memory consumption
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Other approaches

@ Apart from speeding up the exact computation, there have been a lot of works on
approximation of GP inference.

@ These methods often target at some specific scenario and provide good
approximation for the targeted scenarios.

@ Provide an overview about common approximations.
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Big data (?)

@ lots of data # complex function

@ In real world problems, we often collect a lot of data for modeling relatively simple

relations.
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Data subsampling?

@ Real data often do not evenly distributed.
@ We tend to get a lot of data on common cases and very few data on rare cases.
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Covariance matrix of redundant data

o With redundant data, the covariance matrix becomes low rank.

@ What about low rank approximation?
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Low-rank approximation

@ Let's recall the log-likelihood of GP:
log p(y|X) = log N (y|0,K + ¢°I)

where K is the covariance matrix computed from X according to the kernel
function k(-,-) and o2 is the variance of the Gaussian noise distribution.

@ Assume K to be low rank.
@ This leads to Nystrom approximation by Williams and Seeger [Williams and Seeger,
2001].
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Approximation by subset

@ Let's randomly pick a subset from the training data: Z € RM*@.

@ Approximate the covariance matrix K by K.
K =K.K_'K|, where K., = K(X,Z) and K.. = K(Z, Z).

o Note that K € RV*N K, € RN*M and K., € RM*M,
@ The log-likelihood is approximated by

logp(y|X,0) ~ log N (y]0, K.K_'K + 0°I).
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Nystrom approximation example

The covariance matrix with Nystrom approximation using 5 random data points:
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Nystrom approximation example

Compute tr (K — K) with different M.
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Efficient computation using Woodbury formula

@ The naive formulation does not bring any computational benefits.
A 1 % 2 L Tz 21\ —1
L= —§log|27r(K+0 I — 5Y (K+0 1)y
@ Apply the Woodbury formula:
(KKK +0’I) ' =01 - 'K, (K.. + 0 ?K/K,) 'K

e Note that (K., + 0 2K/K,) € RM*M,
@ The computational complexity reduces to O(NM?).
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Nystrom approximation

@ The approximation is directly done on the covariance matrix without the concept of
pseudo data.

@ The approximation becomes exact if the whole data set is taken, i.e,,
KK 'K' = K.

@ The subset selection is done randomly.
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Gaussian process with Pseudo Data (1)

@ Snelson and Ghahramani [2006] proposes the idea of having pseudo data, which is
later referred to as Fully independent training conditional (FITC).

@ Augment the training data (X, y) with pseudo data u at location Z.

(RN (Bl e (6™ )

where K,y = K(X, X), Ky, = K(X,Z) and K,,, = K(Z,Z).

Zhenwen Dai (Spotify) Variational Gaussian Processes 15 September 2020 @GPSS 2020 21 /60



Gaussian process with Pseudo Data (2)

@ Thanks to the marginalization property of Gaussian distribution,

pyIX) = [ ply.ulX. 2).
@ Further re-arrange the notation:

p(Y? 11|X, Z) = ])(Y|u, X, Z)p(u|Z)

where p(u|Z) = N (u|0, K.,),
p(ylu, X, Z) = N (y KK u Kpy — Kp K 1K, +0°T).
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FITC approximation (1)

@ So far, p(y|X) has not been changed, but there is no speed-up.
) Kff - RNXN in Kff — Kqu;}K}ru + 0'21.

@ The FITC approximation assumes
Py, X,Z) = N (yKpKyu, A +0°T)

where A = (Kjf — K K,/ K} ) oL
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FITC approximation (2)

@ Marginalize u from the model definition:
Py|X,Z) =N (y]0,K; K, K/, + A+ 0*1)
@ Woodbury formula can be applied in the sam way as in Nystrom approximation:
(KKK + A+ ) ' =A - AK.(K.. + K] AK.) 'K A,

where A = (A + o?1)~".
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FITC approximation (3)

FITC allows the pseudo data not being a subset of training data.

The inducing inputs Z can be optimized via gradient optimization.

Like Nystrom approximation, when taking all the training data as inducing inputs,
the FITC approximation is equivalent to the original GP:

plylX,Z =X) =N (y|0,K;; + 0’I)

FITC can be combined easily with expectation propagation (EP).

Bui et al. [2017] provides an overview and a nice connection with variational sparse
GP.
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Model Approximation vs. Approximate Inference
FITC approximation changes the model definition.

@ A better objective under FITC does not necessarily corresponds to a better
approximation to the original GP.

@ In fact, optimizing Z can lead to overfitting. [Quifionero-Candela and Rasmussen,
2005, Bauer et al., 2016]

FITC (nlml = 23.16, 0, = 1.93 - 107%)

[: + + + + + + |+ |+ =

Optimal values for the exact GP: niml = 34.15, 0 = 0.274. [Bauer et al., 2016]
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Model Approximation vs. Approximate Inference

Variational inference (VI) takes a different approach.

@ VI keeps the model definition untouched.

@ VI derives a lower bound of the log-marginal likelihood:

og(s) > [ ate) log p%)dx .

o Alternatively, it can be written as

KL (q(x) || p(z]y)) = logp(y) — L.
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Variational Sparse Gaussian Process (1)

e Titsias [2009] introduces a variational approach for sparse GP.

@ It follows the same concept of pseudo data:

p(y|X) = / Py £)p(E[u, X, Z)p(u|Z)

where p(u|Z) = N (u|0,K,.,),
p(yu,X,Z) = N (y|Kp K u, Kpr — Kp K Kj, +0°T).
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Variational Sparse Gaussian Process (2)

o Instead of approximate the model, Titsias [2009] derives a variational lower bound.
@ Normally, a variational lower bound of a marginal likelihood looks like

log p(y[X) =log / Py |E)p(E[u, X, Z)p(ulZ)

f,u
p(y|f)p(flu, X, Z)p(u|Z)
q(f, u) '

> / ¢(f, ) log
fou
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Special Variational Posterior

o Titsias [2009] defines an unusual variational posterior:
q(f,u) = p(flu, X, Z)q(u), where g(u) =N (ulp, X).

@ Plug it into the lower bound:

[ ikl Py ) plER X ZTp(u]Z)
= | e Xzt tos P
(108§P(Y|f)> (fFlu,X,Z)q(u) — KL (¢(u) || p(ul|Z))
= (log NV (y KKy, u,0%1)) ) — KL (g(u) [| p(ul|Z))
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Special Variational Posterior

@ There is no inversion of any big covariance matrices in the first term:

N 1
Y log oo — — <(Kqu;u1u — y)T(Kqu;}u — y)>

202 q(u)

@ The overall complexity of the lower bound is O(NM?).
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Tighten the Bound

e Find the optimal parameters of ¢(u):

*

X = arg max L(p, ).
7))

@ Make the bound as tight as possible by plugging in p* and X*:

L =1logN (y|0,K;K K], +0’I) — %tr (Ksr — KK K7 ) -

@ The 1st term is the same as in the Nystrom approximation.

@ The overall complexity of the lower bound remains O(N M?).
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Variational sparse GP

@ Note that £ is not a valid log-pdf, fy exp(L(y)) < 1, due to the trace term.

@ As inducing points are variational parameters, optimizing the inducing inputs Z
always leads to a better bound.

@ The model does not “overfit” with too many inducing points.

10 4 = Mean
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FITC vs. Variational sparse GP

@ model approximation vs. approximate inference (see [Bauer et al., 2016])

@ Note that, when point estimating hyper-parameters, if the number of inducing
points is too small, the model may “under-fit":

L =logp(y) — KL (q(z) | p(z[y))

FITC (nlml = 23.16, 0, = 1.93 - 10~%) VFE (nlml = 38.86, 0,, = 0.286)
T T T

[: + + + + + + [+ |+ | j

Optimal values for the exact GP: nlml = 34.15, 0 = 0.274. [Bauer et al., 2016]
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Limitations of Sparse GP

Variational sparse GP has computational complexity O(N M?).

The computation becomes infeasible under two scenarios:

@ The number of data points NV is very high, e.g., millions of data points.

@ The function is very complex, which requires tens of thousands of inducing points.
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Mini-batch Learning (1)

@ Mini-batch learning allows DNNs to be trained on millions of data points.

@ Given a set of inputs and labels, D = {x;, v;},, (xi,4;) ~ p(x,y), the true loss
function is defined as

Ctrue = / I[(fo(x), y)p(x,y)dxdy ~ %Z I(fo(x),y) =c,

where fy(-) is DNN and [(-, -) is the loss function.
e Gradient descent (GD) updates the parameters by

de

Oy = 0, — 77@-
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Mini-batch Learning (2)

@ Mini-batch learning approximates the loss by subsampling the data,
1
CMB = B Z U(fo(xi),Yi)-
Xi,Yi~P(%,y)
@ Stochastic gradient descent (SGD) updates the parameters by

deve
dg -

Opp1 =0, — 1

@ Can mini-batch learning be applied to GPs as well?
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Mini-batch Learning for GPs

@ Mini-batch learning relies on the objective being an expectation w.r.t. the data,

Le., <l<f9(x)’y)>p(x,y)'
@ The log-marginal likelihood of GP:

log V (y]0, K + 0°I)

@ The variational lower bound of sparse GP:

log N (y|0, K K. K;, +0°I) — %ﬂtr (Ksr — KK Kj,)
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“Uncollapsed” Lower Bound

@ Hensman et al. [2013] discovers that the “uncollapsed” variational lower bound of
sparse GP can be used for mini-batch learning.

@ The “uncollapsed” variational lower bound of sparse GP:

L= <logp(Y|f)>p(f\u,x,Z)q(u) — KL (g(u) || p(u))

@ The 2nd term, KL (¢(u) || p(u)), does not depend on the data.
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“Uncollapsed” Lower Bound

@ In the 1st term, as p(y|f) = N (y|f, o*1),

log p(y|f) = Zlog/\f Yn! s 7?)

n=1

e Denote ¢(f|X,Z) = [ p(flu, X, Z)q(u)du.

<10gp(}’|f)>q(f|xz <ZIOgN Ynlfos o )>

q(f1X,Z)

_Z<log/\/ Unlfns ) gt tensy

n=1
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Stochastic Variational GP (SVGP)

@ The resulting lower bound can be written as the sum over the data,

N
Z logN yn‘fnv )>q(fn|xn,z) — KL <Q(u) ||p(u))
g (108 N (111 °) )1y — KL (W) [ () = L

XiyYi Nﬁ(x7y)

@ This allows us to do mini-batch learning with SGD,

Zhenwen Dai (Spotify) Variational Gaussian Processes 15 September 2020 @GPSS 2020 41 /60



2D Synthetic Data
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Airline Delay Data

Flight delays for every commercial flight in the USA from January to April 2008.
700,000 train, 100,000 test

GPs on subsets SVI GP
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The pros and cons of SVGP

Pros

@ With mini-batch learning, the computational complexity reduces from O(N M?) to
O(M?3).

Cons

@ The variational distribution ¢(u) needs to be explicitly optimized.
@ The number of variational parameters increase from MQ to (2M + M?)Q.

@ Optimization relies on SGD methods and the methods like L-BFGS are no longer
applicable.

@ It can be challenging to initialize g(u).
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Non-Gaussian likelihood

So far, we have only discussed GP regression with Gaussian noise distribution.

In practice, many difference noise distributions for modelling real data, e.g.,

@ Student-t distribution: data with outliers
@ Poisson / Multi-nomial distribution: Integer counts
@ Beta distribution: bounded real values

@ Bernoulli / Categorical distribution: classification labels
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Common approaches

Common choice for approximation inference:

@ Exact GP with Laplace approximation
@ Expectation Propagation (EP) with sparse GP

Both of them are quite complex to implement and difficult to scale.
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SVGP with non-Gaussian likelihood

Let's use a binary classification as an example.

@ The outputs are binary. y = (y1,...,yn), ¥; € {0,1}.
@ The likelihood is a Bernoulli distribution with a Sigmoid link function:

p(yilfi) = o(fi)¥ (1 — g(fi))(l—yi)
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SVGP with non-Gaussian likelihood

@ The lower bound of SVGP is

L= Z (10gp(yn|fn)>q(fn|xn,z) — KL (¢(u) || p(u)) .

n=1

@ The 2nd term, KL (¢(u) || p(u)), is closed form.
o The st term, 3. (log p(Yn| fn))y(fu|xn.z): 15 the sum of a list of 1D integrals.
@ Those integrals are intractable.
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Gauss-Hermite Quadrature

Regarding those 1D integrals,

@ ¢(fn|xn,Z) is a 1D Gaussian distribution. See the definition:

q(fulxn, Z) = /p(fn\u,xn,Z)q(u)du.

@ Gauss-Hermite quadrature can be applied,

C
(108 P(Ynl ) g( 1. 102 %Z i 1og p(ynlf;),

e
YT O H ()P

@ The quadrature result is exact if log p(y,|f.) is a polynomia
with its order less than C.
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Binary Classification Example

KLSP

MF

GFITC

[Hensman et al., 2015]
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Beyond 1D GPs

@ Multi-class classification is a common example.

@ For a C-class classification, y € {1,...,C}, a GP is used to model each class,
fi,....fc ~GP(0, K(X, X)).

@ The common likelihood is a categorical distribution with a soft-max function,

c

_ \Olyn—1] - - -
p(yn|fn17-"afn0) Jl;[lg(fn]) ’ g(f"]) qu:lefnj’

@ Gauss-Hermite quadrature is not a good choice due to high dimensionality.
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Monte Carlo Sampling

@ Monte Carlo sampling can approximate the multi-dimensional integral:

C
(108 Dl £:)). 6, 1, 29 = / (£l Z) S 8lyn — 71108 g(fo)dE,
7j=1

1 T C
~ >N 6lyn — 5)10g g(finj)

where f;,, ~ q(f,|x,,2Z) and £, = (fin1,- - -, finc)-

® Reparameterization trick can be used to reduce of the variance of the gradient.
Denote q( fnj|Xnj, Z) = N (myj, 0 n]) A sample can be rewritten as

ftnj = Mp; + Onj€t, € ™~ N(O, 1)
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Are big covariance matrices always (almost) low-rank?

@ Of course, not.

@ A time series example
y=f{t)+e

@ The data are collected with even time interval continuously.
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A time series example: 10 data points
When we observe until ¢ = 1.0:

3.5 Mean
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A time series example: 100 data points

When we observe until ¢ = 10.0:

Mean

3 X Data
< Confidence
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A time series example: 1000 data points

When we observe until ¢ = 100.0:
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Banded precision matrix

@ For the kernels like the Matern family, the precision matrix is banded.

@ For example, given a Matern% or known as exponential kernel:
k(z,2') = 0% exp(— \av_;cl)

Q=kix,x)"*

This slide is taken from Nicolas Durrande [Durrande et al., 2019].
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Closed form precision matrix

@ The precision matrix of Matern kernels can be computed in closed form.

@ The lower triangular matrix from the Cholesky decomposition of the precision
matrix is banded as well.

1 B 1
log(y|X) = —3 log |27r(LLT) 1| — Etr (nyLLT)

where L is the lower triangular matrix from the Cholesky decomposition of the
precision matrix ), Q = LL".

@ The computational complexity becomes O(N).
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Other approximations

@ deterministic/stochastic frequency approximation
@ distributed approximation

@ conjugate gradient methods for covariance matrix inversion
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