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Learning Theory

• F space of functions

• A learning algorithm

• S = {(x1, y1), . . . , (xN , yN )}
• S ∼ P (X × Y)
• `(AF (S), x, y) loss function
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Statistical Learning

e(S,A,F) = EP ({X ,Y}) [`(AF (S), x, y)]
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Statistical Learning

e(S,A,F) = EP ({X ,Y}) [`(AF (S), x, y)]

≈ 1

M

M∑
n=1

`(AF (S), xn, yn)
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No Free Lunch

We can come up with a combination of {S,A,F} that makes
e(S,A,F) take an arbitary value
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Example
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Data and Knowledge
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Assumptions: Algorithms

Statistical Learning

AF (S)
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Assumptions: Biased Sample

Statistical Learning

AF (S)
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Assumptions: Hypothesis space

Statistical Learning

AF (S)
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The No Free Lunch

• There seems to be a narrative that the more flexible a model is
the better it is

• This is not true

• The best possible model has infinite support (nothing is
excluded) but very focused mass

• Your solution can only ever be interpreted in the light of your
assumptions
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GPSS

Iudicium Posterium Discipulus Est Prioris1

1The posterior is the student of the prior
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Conditional Gaussians

N

([
0

0

]
,

[
1 0.5

0.5 1

])
N

([
0

0

]
,

[
1 0.9

0.9 1

])
N

([
0

0

]
,

[
1 0

0 1

])

23



Gaussian Processes
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Gaussian Processes
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The Gaussian Identities

p(x1, x2) p(x1) =

∫
p(x1, x2)dx p(x1|x2) =

p(x1, x2)

p(x2)

Gaussian Identities
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Stochastic Processes



Kolmogrovs Excistence Theorem

For all permutations π, measurable sets Fi ⊆ Rn and probability
measure ν

1. Exchangeable

νtπ(1)···tπ(k)
(
Fπ(1) × · × Fπ(k)

)
= νt1···tk (F1 × · · · × Fk)

2. Marginal

νt1·tk (F1 × · × Fk) = νt1···tk,tk+1·tk+m (F1 × · × Fk × Rn × · × Rn)

In this case the finite dimensional probability measure is a
realisation of an underlying stochastic process
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Gaussian Distribution - Exchangeable

p(x1, x2) = N
(
x1

x2

∣∣∣∣∣ µ1µ2 , k11 k12

k21 k22

)
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p(x1, x2) = N
(
x1

x2

∣∣∣∣∣ µ1µ2 , k11 k12

k21 k22

)
= p(x2, x1)
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Gaussian Distribution - Exchangeable

p(x1, x2) = N
(
x1

x2

∣∣∣∣∣ µ1µ2 , k11 k12

k21 k22

)

= p(x2, x1) = N
(
x2

x1

∣∣∣∣∣ µ2µ1 , k22 k12

k21 k11

)
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Gaussian Distribution - Exchangeable
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Gaussian Distribution - Exchangeable
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Gaussian Distribution - Marginal

p(x1, x2) = N
(
x1

x2

∣∣∣∣∣ µ1µ2 ,
k11 k12

k21 k22

)
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Gaussian Distribution - Marginal

p(x1, x2) = N
(
x1

x2

∣∣∣∣∣ µ1µ2 ,
k11 k12

k21 k22

)

⇒ p(x1) =

∫
x2

p(x1, x2) = N (x1 | µ1, k11)
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Gaussian Distribution - Marginal

p(x1, x2) = N
(
x1

x2

∣∣∣∣∣ µ1µ2 ,
k11 k12

k21 k22

)

⇒ p(x1) =

∫
x2

p(x1, x2) = N (x1 | µ1, k11)

p(x1, x2, . . . , xN ) = N


x1

x2
...
xN

∣∣∣∣∣∣∣∣∣∣
µ1

µ2
...
µN

,

k11 k12 · · · k1N

k21 k22 · · · k2N
...

...
. . .

...
kN1 kN2 · · · kNN


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(
x1

x2

∣∣∣∣∣ µ1µ2 ,
k11 k12

k21 k22

)

⇒ p(x1) =

∫
x2

p(x1, x2) = N (x1 | µ1, k11)
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x1

x2
...
xN
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µ1

µ2
...
µN

,

k11 k12 · · · k1N

k21 k22 · · · k2N
...

...
. . .

...
kN1 kN2 · · · kNN



⇒ p(x1) =

∫
x2,...,xN

p(x1, x2, . . . , xN ) = N (x1 | µ1, k11)
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Gaussian Distribution - Marginal
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Gaussian processes

GP(·, ·)

∞

M ∈ R∞×N
→

N (·, ·)

N

The Gaussian distribution is the projection of the infinite Gaussian
process
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Unsupervised Gaussian Processes



Unsupervised Learning

yi

fi θ

x

D

p(y|x)

yi

fi θ

x

D

p(y)
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Unsupervised Learning
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Priors
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Priors

p(y) =

∫
p(y|f)p(f |x)p(x)dfdx

1. Priors that makes sense

p(f) describes our belief/assumptions and defines our
notion of complexity in the function

p(x) expresses our belief/assumptions and defines our
notion of complexity in the latent space

2. Now lets churn the handle
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Relationship between x and data

p(y) =

∫
p(y|f)p(f |x)p(x)dfdx

• GP prior
p(f |x) ∼ N (0,K) ∝ e− 1

2
(fTK−1f)

Kij = e−(xi−xj)
TMTM(xi−xj)

• Likelihood

p(y|f) ∼ N(y|f, β) ∝ e−
1
2β

tr(y−f)T(y−f)
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Laplace Integration

"Nature laughs at the difficulties of integrations"
– Simon Laplace
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Approximate Inference



Machine Learning

p(y)

• Given some observed data y

• Find a probabilistic model such that the probability of the data
is maximised

• Idea: find an approximate model q that we can integrate

40



Lower Bound

x

y y

x

y

p(y) =

∫
x
p(y|x)p(x) = p(y|x)p(x)

p(x|y)

x

y

θ

qθ(x) ≈ p(x|y)
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Deterministic Approximation

log p(y)

L(q)

KL(q||p)

42



Variational Bayes

p(y)
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Variational Bayes

log p(y)

43



Variational Bayes

log p(y) = log p(y) +
∫

log
p(x|y)
p(x|y)dx

43



Variational Bayes
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q(x)log p(y)dx+

∫
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p(x|y)
p(x|y)dx
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∫
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1
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Jensen Inequality

Convex Function

λf(x0) + (1− λ)f(x1) ≥ f(λx0 + (1− λ)x1)
x ∈ [xmin, xmax]

λ ∈ [0, 1]] 44



Jensen Inequality

E[f(x)] ≥ f(E[x])∫
f(x)p(x)dx ≥ f

(∫
xp(x)dx

)
45



Jensen Inequality in Variational Bayes

∫
log(x)p(x)dx ≤ log

(∫
xp(x)dx

)
moving the log inside the the integral is a lower-bound on the
integral
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The "posterior" term

KL(q(x)||p(x|y)) =
∫
q(x) log

q(x)

p(x|y)dx
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The "posterior" term
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q(x) log
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∫
q(x) log

p(x|y)
q(x)

dx
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The "posterior" term

KL(q(x)||p(x|y)) =
∫
q(x) log

q(x)

p(x|y)dx

= −
∫
q(x) log

p(x|y)
q(x)

dx

≥ −log
∫
p(x|y)dx = −log1 = 0
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= {Lets assume that q(x) = p(x|y)}
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The "posterior" term

KL(q(x)||p(x|y)) =
∫
q(x) log

q(x)

p(x|y)dx

= {Lets assume that q(x) = p(x|y)}

=

∫
p(x|y) log

p(x|y)
p(x|y)︸ ︷︷ ︸

=1

dx
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The "posterior" term

KL(q(x)||p(x|y)) =
∫
q(x) log

q(x)

p(x|y)dx

= {Lets assume that q(x) = p(x|y)}

=

∫
p(x|y) log

p(x|y)
p(x|y)︸ ︷︷ ︸

=1

dx

= 0
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Kullback-Leibler Divergence

KL(q(x)||p(x|y)) =
∫
q(x) log

q(x)

p(x|y)dx

• Measure of divergence between distributions

• Not a metric (not symmetric)

• KL(q(x)||p(x|y)) = 0⇔ q(x) = p(x|y)
• KL(q(x)||p(x|y)) ≥ 0
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The "other terms"

∫
q(x)log

1

q(x)
dx+

∫
q(x)log p(x, y)dx =
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The "other terms"
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Variational Bayes

log p(y) =
∫
q(x)log

1

q(x)
dx+

∫
q(x)log p(x, y)dx+

∫
q(x) log

q(x)

p(x|y)dx

≥ −
∫
q(x)log q(x)dx+

∫
q(x)log p(x, y)dx

• The Evidence Lower BOnd

• Tight if q(x) = p(x|y)
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Deterministic Approximation

log p(y)

L(q)

KL(q||p)
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ELBO

log p(y) ≥ −
∫
q(x)log q(x)dx+

∫
q(x)log p(x, y)dx

= Eq(x) [log p(x, y)]−H(q(x)) = L(q(x))

• if we maximise the ELBO we,
• find an approximate posterior
• lower bound the marginal likelihood

• maximising p(y) is learning

• finding q(x) ≈ p(x|y) is prediction
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Lower Bound

x

y y

x

y

p(y) =

∫
x
p(y|x)p(x) = p(y|x)p(x)

p(x|y)

x

y

θ

qθ(x) ≈ p(x|y)
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Why is this useful?

Why is this a sensible thing to do?

• If we can’t formulate the joint distribution there isn’t much we
can do

• Taking the expectation of a log is usually easier than the
expectation

• We are allowed to choose the distribution to take the
expectation over

– Ryan Adams2

2Talking Machines Podcast
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How to choose Q?

L(q(x)) = Eq(x) [log p(x, y)]−H(q(x))

• We have to be able to compute an expectation over the joint
distribution

• The second term should be trivial
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Lower Bound3

L =

∫
x
q(x)log

(
p(y, f, x)

q(x)

)

3Damianou, 2015
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Lower Bound3

L =

∫
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q(x)log
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(
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=

∫
x
q(x)log p(y | f)p(f | x)−

∫
x
q(x)log

q(x)

p(x)

= L̃ −KL(q(x) ‖ p(x))

3Damianou, 2015
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Lower Bound

L̃ =

∫
q(x) log p(y|f)p(f |x)dfdx

• Has not eliviate the problem at all, x still needs to go through
f to reach the data

• Idea of sparse approximations4

4Candela et al., 2005
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Lower Bound 5

p(f, u | x, z)

• Add another set of samples from the same prior

• Conditional distribution

5Titsias et al., 2010
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Lower Bound 5

p(f, u | x, z) = p(f | u, x, z)p(u | z)

• Add another set of samples from the same prior

• Conditional distribution

5Titsias et al., 2010
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Lower Bound 5

p(f, u | x, z) = p(f | u, x, z)p(u | z)
= N (f | KfuK

−1
uu u,Kff −KfuK

−1
uuKuf )N (u | 0,Kuu)

• Add another set of samples from the same prior

• Conditional distribution

5Titsias et al., 2010
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Lower Bound

p(y, f, u, x | z) = p(y | f)p(f | u, x)p(u | z)p(x)

• we have done nothing to the model, just project an additional
set of marginals from the GP

• however we will now interpret u and z not as random variables
but variational parameters

• i.e. the variational distribution q(·) is parametrised by these
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Lower Bound

• Variational distributions are approximations to intractable
posteriors,

q(u) ≈ p(u | y, x, z, f)
q(f) ≈ p(f | u, x, z, y)
q(x) ≈ p(x | y)

• Bound is tight if u completely represents f i.e. u is sufficient
statistics for f

q(f) ≈ p(f | u, x, z, y) = p(f | u, x, z)
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Lower Bound

L̃ =

∫
x,f,u

q(f)q(u)q(x)log
p(y, f, y | x, z)
q(f)q(u)

• Assume that u is sufficient statistics of f

q(f) = p(f | u, x, z)
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q(u)

= Ep(f |u,x,z)[p(y | f)]−KL(q(u) ‖ p(u | z))
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Lower Bound

L = Ep(f |u,x,z)[p(y | f)]−KL(q(u) ‖ p(u | z))−KL(q(x) ‖ p(x))

• Expectation tractable (for some co-variances)

• Allows us to place priors and not "regularisers" over the latent
representation

• Stochastic inference Hensman et al., 2013

• Importantly p(x) only appears in KL(· ‖ ·) term!
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Latent Space Priors

p(x) ∼ N (0, I)
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Automatic Relevance Determination

k(xi,xj) = σe−
∑D
d αd·(xi,d−xj,d)2

GPy

Code

[]python RBF(...,ARD=True) Matern32(...,ARD=True)
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Dynamic Prior

p(x | t) = N (µt,Kt)

67



Structured Latent Spaces



Explaining Away

y

x ε

y = f(x) + ε
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Explaining Away

y

x ε

y − ε = f(x)
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Factor Analysis

y

x2x1 x3

ε

y = f(x1, x2, x3) + ε
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Alignments
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IBFA with GP-LVM6

y1 y2

f1 f2

w1 x w3

θ1 θ2

D1 D2

y1 = f(wT
1 x) y2 = f(wT

2 x)

6Damianou et al., 2016
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GP-DP7

7Lawrence et al., 2019
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Constrained Latent Space8

y

x

ε

y = f(g(y)) + ε

8Lawrence et al., 2006
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Geometry
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Latent GP-Regression9

p(Y|X) =

∫
p(Y|F) p(F|X,X(C)) p(X(C)) dF dX(C).

9Bodin et al., 2017, Yousefi et al., 2016
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Discrete
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Continous
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Composite Gaussian Processes



Composite Gaussian Processes 10

yf1x1f2x2

10Damianou et al., 2013
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Composite Functions

y = fk(fk−1(. . . f0(x))) = fk ◦ fk−1 ◦ · · · ◦ f1(x)
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When do I want Composite Functions

y = fk ◦ fk−1 ◦ · · · ◦ f1(x)

1. My generative process is composite
• my prior knowledge is composite

2. I want to "re-parametrise" my kernel in a learning setting
• i have knowledge of the re-parametrisation
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Because we lack "models"?
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Composite Functions
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Composite functions

y = fk(fk−1(. . . f0(x))) = fk ◦ fk−1 ◦ · · · ◦ f1(x)

Kern(f1) ⊆ Kern(fk−1 ◦ . . .◦f2 ◦f1) ⊆ Kern(fk ◦fk−1 ◦ . . .◦f2 ◦f1)

Im(fk ◦fk−1 ◦ . . .◦f2 ◦f1) ⊆ Im(fk ◦fk−1 ◦ . . .◦f2) ⊆ . . . ⊆ Im(fk)
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Sampling

84



Sampling
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Sampling
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Change of Variables
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Change of Variables
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Change of Variables
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Change of Variables
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Change of Variables
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Change of Variables

92



Change of Variables
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"I’m Bayesian therefore I am superior"
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Because we want to hang out with the cool kids

Deep Learning is a bit like smoking, you know that its
wrong but you do it anyway because you want to look
cool.
– Fantomens Djungelordspråk
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MacKay plot
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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The Final Composition
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Remember why we did this in the first place
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These damn plots
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It gets worse
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It gets even worse
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Approximate Inference

• Sufficient statistics

q(F)q(U)q(X) = p(F|Y,U,X,Z)q(U)q(X)

= p(F|U,X,Z)q(U)q(X)

• Mean-Field

q(U) =
L∏
i

q(Ui)

Y

fL

fL−1

f1

x

u1

uL−1

uL
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The effect
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What have we lost

• Our priors are not reflected correctly
• → we cannot interpret the results

• No intermediate uncertainties
• → we cannot do sequential decision making

• We are performing a massive computational overhead for very
little use

• ". . . throwing out the baby with the bathwater. . . "
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What we really want11

0 2 4 6

−2

0

2

4
Inputs

0 2 4 6

Rotation 1

0 2 4 6

Translation 1

0 2 4 6

Rotation 2

0 2 4 6

Translation 2

11Ustyuzhaninov et al., 2019
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What we really want12

12Ustyuzhaninov et al., 2019
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Summary



Summary

• Unsupervised learning13 is very hard.

• Its actually not, its really really easy.

• Relevant assumptions needed to learn anything useful

• Strong assumptions needed to learn anything from "sensible"
amounts of data

• Stochastic processes such as GPs provide strong, interpretative
assumptions that aligns well to our intuitions allowing us to
make relevant assumptions

13I would argue that there is no such thing
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Summary II

• Composite functions cannot model more things

• However, they can easily warp the input space to model less
things

• This leads to high requirments on data

• Even bigger need for uncertainty propagation, we cannot
assume noiseless data

• We need to think about correlated uncertainty, not marginals
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eof
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