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Learning Theory

F space of functions

A learning algorithm

S ={(z1,91),...,(zn,yn)}
S~ P(X xY)
U(AF£(S),z,y) loss function



Statistical Learning

6(8, A, ]:) = EP({X,)/}) [g(A]:(S)v T, y)]



Statistical Learning

6(8’ A, f) = EP({X,J;}) [K(A]:(S)vxvy)]
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No Free Lunch

We can come up with a combination of {S, A, F} that makes
e(S, A, F) take an arbitary value
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Data and Knowledge
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Assumptions: Algorithms
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Statistical Learning
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Assumptions: Biased Sample
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Assumptions: Hypothesis space
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The No Free Lunch

e There seems to be a narrative that the more flexible a model is
the better it is
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The No Free Lunch

e There seems to be a narrative that the more flexible a model is
the better it is

e This is not true

e The best possible model has infinite support (nothing is
excluded) but very focused mass
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The No Free Lunch

e There seems to be a narrative that the more flexible a model is
the better it is

e This is not true

e The best possible model has infinite support (nothing is
excluded) but very focused mass

e Your solution can only ever be interpreted in the light of your
assumptions
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ludicium Posterium Discipulus Est Prioris*

1The posterior is the student of the prior
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Gaussian Processes



Gaussian Processes
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Gaussian Processes
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Gaussian Processes
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Gaussian Processes
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Gaussian Processes
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Conditional Gaussians
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Gaussian Processes
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Gaussian Processes
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The Gaussian Identities

p(z1,22)

ponz) e = [planaie el = B0

Gaussian Ildentities
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https://github.com/carlhenrikek/COMS30007/blob/master/Lectures/gaussianidentities.pdf

Stochastic Processes



Kolmogrovs Excistence Theorem

For all permutations 7, measurable sets F; C R™ and probability
measure v

1. Exchangeable
Vtw(l)"'tw(k) (Frr(l) X - X Fw(k)) = Vgy-ty, (F1 X - X Fk)
2. Marginal

Vit (F1 X - X Fi) = vy, Fiy x - X F, x R" x - x R"™)

“tetk+1 thtm (

In this case the finite dimensional probability measure is a
realisation of an underlying stochastic process
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Gaussian Distribution - Exchangeable

T

T2

p(r1,22) =N (

p1 o ki kg
pe ka1 ko
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Gaussian Distribution - Exchangeable

1

p(x1,22) = ./\/(

1 ki ko )

)
H i) 125} kgl /{722

= p(x2,x1)
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Gaussian Distribution - Exchangeable
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Gaussian Distribution - Exchangeable
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Gaussian Distribution - Exchangeable
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Gaussian Distribution - Marginal

T

)

x2 | g2 ko1 koo

p(r1,29) =N (

1 ki ko )
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Gaussian Distribution - Marginal

p(a1,22) =N< .

T2

1 ki ko
po ko koo

= plar) = / p(e1, 22) = N (@1 | p, k)
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Gaussian Distribution - Marginal

(1, 22) =N< o

x2

1 ki ko
po ko1 koo

= p(z1) :/ p(x1,z2) =N (1 | pr, ki)

r1 | 1 ki ko k1N
x2 | p2 kor koo - kon

p(l’l,l’Q,---,xN):N . o 9 . .
TN | un  kn1 En2 knn
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Gaussian Distribution - Marginal

1 ki ki
po ko koo

x1

p(l‘l,l‘z) :N<
Z2

= p(z1) = / p(w1,22) = N (21 | i, k)
T2

x1 | 1 ko ki - kin
xo | p2 ko1 koo --- kon
p(-701,332,-~~,$N)=N . AT . .
N | pn kvt kn2 - kNN
= p(x1) :/ p(r1,22,...,2N) =N (21 | p1, k1
T2,...; N
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Gaussian Distribution - Marginal
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Gaussian processes

The Gaussian distribution is the projection of the infinite Gaussian
process
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Unsupervised Gaussian Processes



Unsupervised Learning

p(ylz)
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Priors
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Priors

p(y) = / p(ul H)p(fl2)p(z)d fdz

1. Priors that makes sense

p(f) describes our belief/assumptions and defines our
notion of complexity in the function

p(x) expresses our belief/assumptions and defines our
notion of complexity in the latent space

2. Now lets churn the handle
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Relationship between z and data

p(y) = / p(yl F)p(f12)p(x)d fd

e GP prior
p(fle) ~ N (0, K) oc e 2K

K = o~ (@i—a;) T MT M (2;—a;)
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Relationship between z and data

p(y) = / p(yl F)p(f12)p(x)d fd

e GP prior
p(fle) ~ N (0, K) oc e 2K

K = o~ (@i—a;) T MT M (2;—a;)
e Likelihood

— Lty (y— )T (y—
p(ylf) ~ N(y|f, B) x e 285 H (=)
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Laplace Integration

"Nature laughs at the difficulties of integrations”
— Simon Laplace
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Approximate Inference




Machine Learning

p(y)

e Given some observed data y

e Find a probabilistic model such that the probability of the data

is maximised

e |dea: find an approximate model ¢ that we can integrate
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Deterministic Approximation

log p(y) A

KL(q||p)
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Variational Bayes

43



Variational Bayes

log p(y)
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Variational Bayes

log p(y) = log p(y) + / log igl‘zgdx
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Variational Bayes

log p(y) = log p(y) + / log ig:z;dx

= x)lo T x)lo p(zly) x
—/q( )log p(y)d +/q( )log p(x’y)d

43



Variational Bayes

log p(y) = log p(y) + / log p(:U'y)dx

= /q(w)log p(y)dx+/q(l’)log plely) g,

_ og PEWPY) 4
_/Q( Jlog p(zly) a
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Variational Bayes

dx

= /q(x)log qxdx—i-/q(x)log p(x,y)dx—i—/q(x) log P

43



Variational Bayes

log p(y) = log p(y) + / log

= /q(m)log p(y)dx+/Q(I)10g Pely) g

_ og PEWPY) 4
_/Q( Jlog p(zly) a

= {IJO@.I X )10 T X T O 1 T
—/q( )lgq(x)d +/Q( )og p(z,y)d +/Q( )lgpmy)d

q(z) o

p(zly)

= /q(:p)log q(lx)der/q(x)log p(m,y)der/q(:E) log
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Jensen Inequality
10 =
o8- /

06"

oY=

o2+ "\

0.0 =

Convex Function
Af(zo) + (L= AN)f(x1) = f(Azo + (1 — A)21)
HAS [wminyxm,(zz]

A€ [0,1]] 44



Jensen Inequality
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Jensen Inequality in Variational Bayes

o
o
3
3
ol

/ log(2)p(z)dz < log ( / xp(w)dx)

moving the log inside the the integral is a lower-bound on the

integral 26



The "posterior" term

q(x)
ek

KL(g(@)lp(zly)) = / o(z) log
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The "posterior" term

KL(g(«)|p(ely)) = / ¢() log p‘ff’; d
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The "posterior" term

KL(q()|lp(a]y)) = / () log <(\ )
plaly

:_/Q(:U)1 Q(m)) ’

- _1Og/p(x|y)d:v = —logl =0
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The "posterior" term

q(x)
ek

KL(g(@)lp(zly)) = / o(z) log
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The "posterior" term

KL(¢(@)lp(ely) = | atz) log p%g;)dm

= {Lets assume that ¢(z) = p(z|y)}
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The "posterior" term

Ku«@wwynz/angig$m

= {Lets assume that ¢(z) = p(z|y)}

I TR G )
= [ plaly) 1o 224

=il
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The "posterior" term

KL(a(@)p(e) = [ a(o) tog 22z
= {Lets assume that ¢(z) = p(z|y)}

B 2l Toe PEY) 4
—/p( ly) log (@) d

=il

=10)
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Kullback-Leibler Divergence

K L(g()lp(zly)) = / 4(z) log pq(fj;)dx

Measure of divergence between distributions

Not a metric (not symmetric)

KL(q(2)||p(z Iy))ZO@Q(x)Zp(:vly)
KL(q(2)||p(z]y)) =
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The "other terms"

/q(m)log q(lzv)dx+ /q(x)log p(z,y)dz =
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The "other terms"

/q(m)log q(lz)dl“ﬁL /q(x)log p(x,y)dr =

= /Q(!E)log p<T’y)dIE

q(z)
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The "other terms"

/Q($)10g q(laj)dl‘—i-/q(w)log p(z,y)dz =

_ o p(z,y) .
—/q(/)l R d

= {Lets assume that q(z) = p(z|y)}

50



The "other terms"

/Q(m)log q(lw)de—F /q(w)log p(z,y)dz =
_ og P&Y) 4
—/q(/)l R d

= {Lets assume that q(z) = p(z|y)}

_ slonog P& Y 40
= /p( |y)log p(xly)d
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The "other terms"

/ q(z)log q(lx)dx - / q(x)log p(z,y)dz =

— | (e )oe PEY) 4
= [ atonog 5%
= {Lets assume that ¢(z) = p(z|y)}

— [ otzlnios P 4o — [ oizltog PEMPE) 4
_/p( [v)log p(fﬁly)d /p( [y)log p(z|y) a
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The "other terms"

/q(x)log q(lx) dz + /q(x)log p(x,y)dr =
— [ atanos P(:9) 4,

q(x)
= {Lets assume that q( ) = p(xly)}

—/Pﬂﬁyl /px\y )d:c

p\r
p(x

= /P($y)10g dx—i—/p x|y)logp(y
p(m

)
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|
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The "other terms"

/Q(ff)log q(lw) dz + /q(x)log p(z,y)dr =

_ o p(z,y) .
— [ ataos g

= {Lets assume that q(z) = p(z|y)}
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The "other terms"

/Q(ff)log q(lw) dz + /q(x)log p(z,y)dr =

_ o p(z,y) .
— [ ataos g

= {Lets assume that q(z) = p(z|y)}

= /P(wy)log Z(Z’g)dx = /p(mw)log p(ly)py) ,

@n pely)
= [ ptelopos Dzt [ pialyogplu)aa
—_——

=il
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Variational Bayes

L
q(z)

q(x)
) "

log p(y) = /q(w)log dw+/q(1')10g p(z,y)dz + /Q(:L’) log
> —/q(ac)log q(z)dz + /q(ac)log p(z,y)dz

e The Evidence Lower BOnd
e Tight if q(x) = p(z|y)
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Deterministic Approximation

log p(y) A

KL(q||p)

52



ELBO

log p(y) > —/q(:r)log q(z)dx + /q(fr)log p(z,y)dx

= Eqy(s) [log p(z,y)] — H(q(x)) = L(q(=))

e if we maximise the ELBO we,

e find an approximate posterior
e lower bound the marginal likelihood

e maximising p(y) is learning

e finding ¢(x) ~ p(x|y) is prediction

53
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Why is this useful?

Why is this a sensible thing to do?

— Ryan Adams?

2Talking Machines Podcast
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Why is this a sensible thing to do?

e If we can't formulate the joint distribution there isn't much we
can do

— Ryan Adams?

2Talking Machines Podcast
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Why is this useful?

Why is this a sensible thing to do?
e If we can't formulate the joint distribution there isn't much we
can do

e Taking the expectation of a log is usually easier than the

expectation

— Ryan Adams?

2Talking Machines Podcast
55)



Why is this useful?

Why is this a sensible thing to do?
e If we can't formulate the joint distribution there isn't much we
can do
e Taking the expectation of a log is usually easier than the
expectation
e We are allowed to choose the distribution to take the
expectation over

— Ryan Adams?

2Talking Machines Podcast
55)



How to choose Q7?

L(q(x)) = Ey(g) [log p(z,y)] — H(q(z))

e We have to be able to compute an expectation over the joint
distribution

e The second term should be trivial

56



3Damianou, 2015
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3Damianou, 2015
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3Damianou, 2015
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3Damianou, 2015
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[= / Y log p(y|)p(flz)d fdz

e Has not eliviate the problem at all, z still needs to go through
f to reach the data

e Idea of sparse approximations*

“Candela et al., 2005
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p(f,u|z,2)

e Add another set of samples from the same prior

e Conditional distribution

Titsias et al., 2010
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p(fvu | QZ,Z) :p(f | u,x,z)p(u ’ Z)

e Add another set of samples from the same prior

e Conditional distribution

Titsias et al., 2010
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p(fiu|z,2) =p(f | u,z,2)p(u | 2)
= N(f | KjuKpu, Kpp — Kpu K Kup)N (u ] 0, Ko

e Add another set of samples from the same prior

e Conditional distribution

Titsias et al., 2010
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p(y, fru, x| 2) = py | fp(f | w,2)p(u | 2)p(z)

e we have done nothing to the model, just project an additional
set of marginals from the GP

e however we will now interpret u and z not as random variables

but variational parameters

e i.e. the variational distribution ¢(-) is parametrised by these

60



e Variational distributions are approximations to intractable
posteriors,

q(u) = p(u | y,, z, f)
q(f) =p(f | u,z,2,y)
q(z) = p(z | y)

61



e Variational distributions are approximations to intractable
posteriors,

q(u) = p(u | y,, z, f)
q(f) =p(f | u,z,2,y)
q(z) = p(z | y)

e Bound is tight if u completely represents f i.e. u is sufficient
statistics for f

Q(f) %p(f ‘ u,:z:,z,y) :p(f | u,x,z)

61
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o ) T Op(y7f7y’$7z)
E—/%f,uq(f)Q( )a(z)l & (e

(y | fp(f | u,z, 2)p(u | 2)
q(f)q(uw)

—/f g(f)q(u)g(x)log?

e Assume that u is sufficient statistics of f

Q(f) :p(f | u,x,z)
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[ p(f |, 2, z)p(u | 2)
q(f)q(u)

L= /xm g(£)q(w)q(z)log

63



(y | p(f | vz, 2)p(u | 2)

q(f)q(w)

(y | p(f | w2, 2)p(u | 2)
p(f | u, 2, 2)q(u)

c

/ f o(f)a(w)q(x)log”

[ 1w ataos”
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(y | p(f | vz, 2)p(u | 2)

q(f)q(w)

(y | Hp(f |z, 2)p(u | 2)
p(f | u,z,2)q(u)

c

/ f o(f)a(w)q(x)log”

[ 1w ataos”
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p(y | Fp(f | u,z,2)p(u | 2)
o q(f)q(u)q(x)log q(f)q(u)
p(f | u,x,2)p(u | 2)
p(f | u,z,2)q(u)
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ply | Fp(f | u,z,2)p(u | 2)
o q(f)q(u)q(z)log «(Dal0)
ply | f

[
I

; p(f|u,x,z)q(u)q(:v)log

p(f | u, @, 2)q(u)q(z)log”

Il

I7f7u

p(f|u,z,z) [p(y ’ f)] - KL(Q(U) H p(u

=

N
~—
~
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L =Ep(flua ey | )] = KL(g(u) || p(u | 2)) — KL(g(2) || p(z))

Expectation tractable (for some co-variances)

Allows us to place priors and not "regularisers" over the latent
representation

Stochastic inference Hensman et al., 2013

Importantly p(z) only appears in KL(- || -) term!
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Latent Space Priors

ouo =}
o35 =)
030 |
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u 1 ° 1 u

p(z) ~ N (0, 1)
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Automatic Relevance Determination

D
k(X’H X]) — 0—6_ Zd ad'(xi,d_x_i,(i)z

[|python RBF(...,ARD=True) Matern32(...,ARD=True)
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p(x | ) = N(p, Ki)
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Structured Latent Spaces




Explaining Away
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Explaining Away
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Factor Analysis

Yy = f(x17x27$3) +e
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Alignments
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IBFA with GP-LVM®

(=) (=)
o
[

Dy Do
N )
T T

%Damianou et al., 2016
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BI~C
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<
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n € [1,N]

“Lawrence et al., 2019

GP-DP: ARD Weights for Dataset (3)

Y-Dimension
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Constrained Latent Space®

8Lawrence et al., 2006
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Latent GP-Regression®

p(YIX) = [ p(YIF) p(FIX, X() p(X() dF dX©)

9Bodin et al., 2017, Yousefi et al., 2016
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Discrete
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Continous
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Composite Gaussian Processes




Composite Gaussian Processes 1°

=B ———@

1°Damianou et al., 2013
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Composite Functions

Y= fr(fe-1(-- fo(x))) = fro fr—10--- 0 fi(z)

79



When do | want Composite Functions

y=frofr—10--0 fi(x)

1. My generative process is composite
e my prior knowledge is composite
2. | want to "re-parametrise" my kernel in a learning setting

e i have knowledge of the re-parametrisation

80



Because we lack "models"?
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Composite Functions

Diff Levels of Abstraction

* Hierarchical Learning Feature representation

* Natural progression from low 3rd layer
level to high level structure "Objects”
as seen in natural complexity

+ Easier to monitor what is 2nd layer
being learnt and to guide the “Object parts”
machine to better subspaces

1st layer

* A good lower level “Edges”
representation can be used
for many distinct tasks Pixels

27
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Composite functions
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Sampling




Sampling
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Sampling

oy =

00 =]
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86



Change of Variables
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Change of Variables
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Change of Variables
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Change of Variables
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Change of Variables
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Change of Variables
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Change of Variables
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"I'm Bayesian therefore | am superior"

WEARE THE BAYESIAN.
: LAY ' ‘ Wy .
Fia

~

YOU WILL BE ASSIMILATED. YOUR TECHNOLOGICAL DISTINCTIVENESS
WILL BE CONSIDERED A SPECIAL CASE OF OUR OWL RESISTANCE IS FUTILE.

Iimgfiip.com
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Because we want to hang out with the cool kids

Deep Learning is a bit like smoking, you know that its
wrong but you do it anyway because you want to look

cool.
— Fantomens Djungelordsprik
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions

2 4 6

oo =5 %

0
[0) 07 -\7 V7 -0.7 -0

101



Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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The Final Composition
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(a) GP (b) 2layers (c) 4layers
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(d) Hidden spaces for 4 layer model
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Remember why we did this in the first place

ol
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These damn plots
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It gets worse
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It gets even worse
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Approximate Inference

X
e Sufficient statistics

q(F)q(U)q(X) = p(F|Y, U, X, Z)q(U)q(X) Q‘g<—@
=p(F|U,X,Z)q ? C

L :
U) = H q(U;)
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The effect
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What have we lost

e Our priors are not reflected correctly
e — we cannot interpret the results
e No intermediate uncertainties

e — we cannot do sequential decision making
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What have we lost

e Our priors are not reflected correctly

e — we cannot interpret the results

No intermediate uncertainties

e — we cannot do sequential decision making

We are performing a massive computational overhead for very
little use

e " . throwing out the baby with the bathwater..."
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What we really want!!
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» » » »
~ ~ ) N
9 v ' ' @ ' @ O
°7 i a
-2 T T T T T T T T T T T T T T T T T T T T
0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

" Ustyuzhaninov et al., 2019

116



t12

What we really wan

fr(=) f2(x) fa(@) f20 fi(x) fao f20 fr(x)
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12Ustyuzhaninov et al., 2019
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Summary




Summary

e Unsupervised learning!? is very hard.

13| would argue that there is no such thing
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e Unsupervised learning!? is very hard.

e [ts actually not, its really really easy.
e Relevant assumptions needed to learn anything useful

e Strong assumptions needed to learn anything from "sensible"

amounts of data

e Stochastic processes such as GPs provide strong, interpretative
assumptions that aligns well to our intuitions allowing us to

make relevant assumptions

13| would argue that there is no such thing
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e Composite functions cannot model more things
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Summary lI

e Composite functions cannot model more things

e However, they can easily warp the input space to model less
things

e This leads to high requirments on data

e Even bigger need for uncertainty propagation, we cannot

assume noiseless data

e We need to think about correlated uncertainty, not marginals

119



eof

120



Reference




References i

References

[§ Bodin, Erik, Neill D. F. Campbell, and Carl Henrik Ek (2017).
Latent Gaussian Process Regression.

[4 Candela, Joaquin Quifionero and Carl Edward Rasmussen (2005).
“A Unifying View of Sparse Approximate Gaussian Process
Regression”. In: Journal of Machine Learning Research 6,
pp. 1939-1959.

[ Damianou, Andreas, Neil D Lawrence, and Carl Henrik Ek (2016).
“Multi-view Learning as a Nonparametric Nonlinear Inter-Battery
Factor Analysis”. In: arXiv preprint arXiv:1604.04939.

121



References i

[3 Damianou, Andreas C (Feb. 2015). “Deep Gaussian Processes and
Variational Propagation of Uncertainty”. PhD thesis. University
of Sheffield.

[ Damianou, Andreas C and Neil D Lawrence (2013). “Deep
Gaussian Processes’. In: International Conference on Airtificial
Inteligence and Statistical Learning, pp. 207-215.

[ Hensman, James, N Fusi, and Neil D Lawrence (2013). “Gaussian
Processes for Big Data". In: Uncertainty in Artificial Intelligence.

122



References iii

[ Lawrence, Andrew R., Carl Henrik Ek, and Neill W. Campbell
(2019). “DP-GP-LVM: A Bayesian Non-Parametric Model for
Learning Multivariate Dependency Structures”. In: Proceedings of
the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA,
pp. 3682-3691.

[{ Lawrence, Neil D. and Joaquin Quifionero Candela (2006). “Local
Distance Preservation in the GP-LVM Through Back
Constraints”. In: Proceedings of the 23rd International
Conference on Machine Learning. ICML '06. Pittsburgh,
Pennsylvania, USA: ACM, pp. 513-520.

123



References iv

[§ Titsias, Michalis and Neil D Lawrence (2010). “Bayesian Gaussian
Process Latent Variable Model”. In: International Conference on
Airtificial Inteligence and Statistical Learning, pp. 844—851.

[§ Ustyuzhaninov, Ivan et al. (2019). “Compositional Uncertainty in
Deep Gaussian Processes’. In: CoRR.

[ Yousefi, Fariba, Zhenwen Dai, Carl Henrik Ek, and Neil Lawrence
(2016). “Unsupervised Learning With Imbalanced Data Via
Structure Consolidation Latent Variable Model”. In: CoRR.

124



	Gaussian Processes
	Stochastic Processes
	Unsupervised Gaussian Processes
	Approximate Inference
	Structured Latent Spaces
	Composite Gaussian Processes
	Summary
	Reference
	References

