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Motivation



Let’s start with a classic
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There was “a lot of correlation”

“the most reasonable 
interpretation [...] is 

direct cause and effect.”

● 3 out of 86 cancer patients were non-smokers, 56 were heavy smokers
● 14.6% lung cancer patients non-smokers vs. 23.9% other cancer patients
● survey 30,000 doctors and see who dies first (all 36 who died of lung 

cancer were smokers)
● much more evidence

wait a sec!



Unobserved confounding
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Introduction



Naive ML approach: standard regression

linear least squares:



Naive ML approach: standard regression



Losing hope... 



Instrumental variables

(a) Z influences X
(b) Z is independent of U
(c) Z only influences Y via X

treatment
instrument outcome

unobserved 
confounding

assume:

identifiable identifiableunique under 
mild conditions



Two stage least squares (2SLS) -- linear case
first stage

second stage



Problem formulation



Assumptions

General problem formulation

(a) Z influences X
(b) Z is independent of U
(c) Z only influences Y via X

treatment
instrument outcome

unobserved 
confounding

non-linear, non-additive

Goal
For any x* compute lower and upper bounds on the causal effect

 



General problem formulation as optimization

treatment
instrument outcome

unobserved 
confounding

g

g
f

f

Goal
We want to know how f may depend on X by optimizing over all U.

Goal
among all possible {g, f} and distributions over U

that reproduce the observed densities {p(x | z), p(y | z)},
estimate the min and max expected outcomes under intervention

optimize over “all” functions

optimize over “all” distributions



Operationalizing this optimization

g

g
f

f

● without any restrictions on functions and distributions:
effect is not identifiable and average treatment effect bounds are vacuous
[Pearl, 1995; Bonet, 2001; Gunsilius 2018]

● mild assumptions suffice for meaningful bounds:
f and g have a finite number of discontinuities [Gunsilius, 2019]

● rest of the talk:
operationalize the optimization

choose convenient
function spacesfind convenient 

representation of U from 
which we can sample

approximate constraints of 
preserving p(x | z) and p(y | z)



Our practical approach



Response functions I [Balke & Pearl, 1994]
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ultimately, we care about 
this functional relation 

each value of U fixes a functional relation f: X → Y

collect the set of all possible resulting functions

label these functions by and index summarizing all  
states of U that lead to the same function

→ Instead of a potentially multivariate distribution over confounders U directly,
we can think of a distribution R over functions f: X → Y



Response functions II

g

g
f

f fR

choose convenient
function spaces

find convenient 
representation of U from 

which we can sample

find convenient representation of 
distributions over response functions



Parameterizing response functions

We choose a simple parameterization

For simplicity, work with linear combination of (non-linear) basis functions:

?
polynomials

neural networks

Gaussian process 
samples



Parameterizing the distribution over 𝜃

implies a causal model

Goal
optimize over distributions              such that

again, assume parametric form ofideally

low variance Monte-Carlo 
gradient estimation

differentiable sampling



Objective function

objective

How can we ensure the constraints: our model must match the observed data.



Match p(x | z) and enforcing Z ⊥ U

factor

copula density univariate CDFs Gaussian marginal densities

identified from data 
manually fix it

for a multivariate Gaussian copula, the optimization parameters are



Match p(y | z)

exact constraint in the continuous outcome setting

data our model

● infinite number of constraints
● integral over non-continuous indicator

choose discrete finite grid in z and assign points to bins

for a dictionary of basis functions

data our model



Intermediate overview

objective

copula:

fix manually

explicit constraint



The final optimization problem
can sample from these in a 

differentiable fashion (w.r.t. 𝜂)

precompute once 
up front from data

only satisfy this approximately

use augmented Lagrangian with stochastic gradient descent
● for each z(m) sample batch of 𝜃
● take average to estimate objective and constraint term RHS
● use auto-differentiation to get gradient and take gradient step



Empirical results



Choices of response functions

Polynomials Neural network
Train a small fully 

connected network 
on observed data 

X→Y and take 
activations of last 

hidden layer as basis 
functions.

Gaussian process
Train GPs on subsets 

of observed data 
X→Y and take 

random samples 
from the GP as basis 

functions.







Sigmoidal cause-effect design

more details and experiments (also in the small data regime) in the paper
https://arxiv.org/abs/2006.06366

https://arxiv.org/abs/2006.06366


Thank you


