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LET ME GIVE YOU THREE PROBLEMS

1. Mr X is a smoker. How long will he live?

2. Is it worthwhile for Mr X to stop smoking?

3. Mr X just died of lung cancer. Would he be alive if he hasn’t been a smoker?



THREE CLASSES OF PROBLEM

1. Prediction by observation: see state of the system, predict outcome.

2. Prediction with intervention: see state of the system, hypothetize an 
intervention on it, predict outcome.

3. Explanation by counterfactuals: see final state of the system, conjecture what 
would have happened if an intervention that did not take place had actually 
taken place.



PEARL’S 
“LADDER OF CAUSATION”
Pearl and Mackenzie (2018). The Book of 
Why, Basic Books.

The most distinctive aspect of Ladders 2 
& 3 is that we imagine (hypothetically or 
counterfactually) an action taken by 
someone outside the system.



LEARNING FROM ACTIONS



THE PROBLEM OF CONFOUNDING

Say that a medication seems to be killing off patients prematurely in a particular 
hospital: mortality rates are higher among those who take it.

Does it mean the medication is indeed bad?



THE PROBLEM OF CONFOUNDING

Not necessarily: perhaps the medication is being prescribed to those who were most 
at risk to begin with!

We say drug-taking and health-outcome are confounded in the sense that a common 
cause can explain their association (and as you know, “association is not causation” 
etc. etc.)

If we know which observed factors confound this association, we can account for them.

The problem gets particularly hard if there are hidden variables responsible for 
confounding.

Dealing with confounding is perhaps the central problem of causal inference (it’s not 
the only one).



RANDOMIZED CONTROLLED TRIALS (RCTS)

Say we have treatments and outcomes variables.

For simplicity, in most cases we will assume treatment is a binary variable X and the 
outcome is a single variable Y.

Assume we can control X in any way we want. But it may be hard to believe the 
treatment selection is not confounded with Y.

Fisher introduced the idea of randomization. Pick values for X based on (say) the flip 
of a coin. Assess differences on Y. Breaking possible confounding is what a 
randomized controlled trial (RCT) is aiming at.



A FORMAL LANGUAGE

In Fisher’s setup, we can imagine that there 
are two “parallel worlds” corresponding to 
the potential outcomes of Y under each 
possible course of action.

Each potential outcome is denoted by Y(x) 
for possible choices x of X.

What the selection of X does is to select 
which “world” we are visiting and 
observing. The rest is missing data.

X Y (0) Y (1)
0 1.6 ?
0 �0.3 ?
1 ? 2.1
0 0.8 ?
1 ? 1.7
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INFERENCE, THE CLASSICAL WAY

The only source of randomness is the flip of the coin. We assume the potential 
outcomes are fixed. We just “visit” them. Think of stopping people in the street to ask 
whom they are going to vote for, for instance.

This led to famous setups in Statistics, such as “Fisher’s sharp null hypothesis”: 
­ assume the null hypothesis Y(0) = Y(1) for all data points. Under the null, there is no missing data!
­ the distribution of the average of each column of selected potential outcomes can be computed. 

Averaging is taken over all assignments to the X column
­ how unlikely is the gap between the observed column averages under the null? This can be computed!



IS THIS REALLY RELEVANT?
Of course it is. It’s the mainstream (and regulated) way of assessing effectiveness of a 
drug, for example. It makes minimal assumptions. By all means, I’d demand a RCT to 
assess a Covid-19 vaccine, with as few assumptions as possible!

But notice the issues of classical inference such as RCT + Fisher’s test:
­ This is only about a specific group of units, under a specific time! It makes zero claims of out-of-sample 

behavior. This is anathema for machine learning/AI.

­ Who cares about the null? But why should we care about the effect size if we assume the potential 
outcomes were fixed to begin with?

­ Theoretically, all a (“successful”) classical RCT for drug approval does is to say “there exists a group of 
people that at some point in time under specific circumstances showed the property that they could 
have better than zero benefits, on average, in taking this-treatment compared to that-treatment”.

­ That’s a mouthful you don’t see in drug advertisements!



IS THIS REALLY RELEVANT?

Why such a low bar?

Confounding is a major issue, so we want RCTs.

But they are expensive (sometimes not possible!). So we end up both with not that 
large of a sample size and – worse – often a non-representative sample of a 
population of interest 
­ How diverse is the design: white, middle-aged men only? Who volunteers: relatives of affected people, 

low-income individuals looking for compensation, high-income individuals with spare time, etc.?

This can of course be much less of a problem in some domains. For instance, we 
are experimented with constantly as part of the web commerce global environment.
­ But even then, practical issues: we can have a very complex space of “things to try”, and we don’t want 

to pester people by experimenting with them constantly and chasing them for consent.



OBSERVATIONAL STUDIES
This is something Fisher and others were vehemently against: infer causal claims without RCTs. We 
shouldn’t buy this oversimplification. The smoking and lung cancer link is perhaps the most famous 
case. 

Much of causal inference concerns observational studies, or even RCTs where the intervention is 
not as precise as we can afford it to be. Donald Rubin extended the basic idea of potential 
outcome to the more general setup that includes observational studies.
­ This is known as the Rubin Causal Model, or Neyman-Rubin model, as Neyman outlined the PO idea originally.

Observational data is particularly important if:
­ We can’t do a RCT for ethical (or technological/economical) reasons, as in the smoking case!
­ We strive to provide predictive claims in a less coarse way (“this treatment is better than that treatment for 

someone of your age”)
­ We want to gather evidence of how a treatment actually works outside of a lab!
­ We want to assess impact on variables nobody thought to measure at trial time, such as particular side-effects
­ We want to collect evidence of what trials to design, as the action space someone can choose from may be too 

large to think through systematically



A VIEW FROM MACHINE LEARNING/AI

The Machine Learning/AI community got into causal inference through a totally 
different route. It didn’t have the baggage of thinking about in-sample estimates as 
in Fisher’s exact test, nor thinking of RCTs as fundamental.

This means they started by completely by-passing potential outcomes/counterfactuals. 
In predicting the effects of interventions, counterfactuals are literally “entities 
multiplied with necessity”. This will be the focus in this talk.

There must still be something non-standard about any causal language, as 
causality is not just probability. But instead of independence constraints between 
factuals and counterfactuals, it suffices to postulate independencies between 
random variables and intervention variables.

Framing them in a graph becomes much simpler, giving rise to causal graphs. But 
remember my First Law of Graphical Models: the drawing is “just” syntactic sugar!

https://en.wikipedia.org/wiki/Occam%27s_razor


CAUSAL GRAPHS

As before, vertices represent random variables. But they can also represent 
intervention variables: “indices” that are fixed by some external agent. It has no 
causes.

In the most classical setting, we define an operation that replaces a random 
variable with an intervention variable set at a particular level. The “do” operator 
of Pearl is the most popular formalism, which we will follow.

The asymmetry of cause and effect follows naturally from the notion of 
intervention variables (and do-operators).



ENCODING X CAUSES Y

Use DAGs (directed acyclic graphs) models. This literally boils down to making X a 
parent of Y, and the model is given by the usual DAG factorization.

How is this connected to an intervention? Consider the operation do(x), which replaces 
X with a fixed value x (we will use squares to represent intervention variables).

X Y p(x, y) = p(x)p(y | x)

YX p(y | do(x)) = p(y | x)

Short for p(y | do(X = x)), based on context



ENCODING X CAUSES Y

What changes from the “natural state” to the “do(x)” regime? The corresponding factor of X gets 
erased, all others remain the same.

Implication for do(y):

The rules for reading-off independencies are defined to be the same regardless whether we 
are talking about random variables or intervention variables, but be aware that in the literature 
it is commonly the case that intervention variables are not explicitly represented in a different way.

“Y does not cause X” is operationalized as p(x | do(y), context) = p(x |context) for all y and 
context. The causal graph follows from the independencies raised. The do operator/intervention is 
a primitive.

X Y p(x | do(y)) = p(x) because
in the intervened graph. 

X ?? Y
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DERIVING IGNORABILITY

The philosophy of causal graphical 
modeling is that 

“We write the model based on what 
we postulate as How Things Happen. 
Only then we derive which e.g. 
ignorability conditions hold, if any.”

X Y

Z

Y

Z

X

conditional ignorability

p(x, y, z) = p(z)p(x | z)p(y | x, z) (always true)

p(y | x) =
P

z p(y | x, z)p(z | x) (always true)

p(y | do(x)) =
P

z p(y | x, z)p(z) (warranted by causal graph)

p(y | do(x), z) = p(y | x, z) (warranted by causal graph)
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HOW MUCH DETAIL SHOULD I SPECIFY?

There is nothing stopping you from postulating a set of graphs and claiming 
ignorability holds only if it is implied by all plausible graphs.

X Y

Z

X Y

Z U

X Y

Z U2U1

Conditional ignorability holds
p(y |do(x), z) = p(y |x, z)

Conditional ignorability holds
p(y |do(x), z) = p(y |x, z)

Conditional ignorability does not
hold (in general)



CONTEXTUAL INTERVENTIONS AND 
EXTERNAL INTERVENTION VERTICES
It is very helpful to think of interventions as separate vertices from the random 
variables modified by them. 

Please notice that I use the “do(x)” notation to modify a symbol X that also takes the 
name of a random variable. I abandon the “do” when the variable is always an 
intervention variable. 

X Y

Z

𝜋

p(x | ⇡ = x⇤, z) = I(x = x⇤)
p(x | ⇡ = idle, z) = p(x | z) (“natural regime”)
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CONTEXTUAL INTERVENTIONS AND 
EXTERNAL INTERVENTION VERTICES
One reason is that it easily allows for the expression of context-driven policies (i.e., 
give drug to patient only if no history of heart disease). 

Representing intervention variables as having “causes” in the graph is weird. In 
contradicts the very notion of an external agent with free will!

X Y

Z

𝜋 X Y

Z

𝜋

Please, no!
p(x | ⇡ = v, z) = f(v, z) v 6= idle

p(x | ⇡ = idle, z) = p(x | z) (“natural regime”)
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GRAPHICAL IDENTIFIABILITY

The other main reason: graphical ways of reading-off ignorability (and other criteria) 
for causal identification.

Causal identification just means we can reduce a causal expression to a 
probabilistic-only expression (i.e., a function of random variables only, free of 
intervention variables).

We did some algebraic manipulations before. But can we just apply a graph 
algorithm to e.g. test whether conditional ignorability holds. That is, when does

It turns out this is easier by explicitly adding an intervention vertex in the graph. 

?p(y | do(x), z) = p(y | x, z)
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A GRAPHICAL CRITERION FOR 
CONDITIONAL IGNORABILITY
Do Z and X d-separate 𝜋 from Y? That is, can I read-off                          from the
graph? 

Yes? Good. That’s it!

X Y

Z

X Y

Z U2U1

𝜋 𝜋

Yes No

⇡ ?? Y |{X,Z}
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THE BACK-DOOR CRITERION

Related to that, consider the most basic query: p(y | do(x)). Is this identifiable from 
my assumptions? 

Let us define a valid adjustment set Z* as one that satisfies the following:

1. Is any element of Z* a descendant of X? No? Good.

2. Do Z* and X d-separate 𝜋 from Y? Yes? Good.

p(y | do(x)) = p(y | ⇡ = x) =
P

z⇤ p(y | ⇡ = x, z⇤)p(z⇤ | ⇡ = x)

=
P

z⇤ p(y | ⇡ = x, x, z⇤)p(z⇤)

=
P

z⇤ p(y | x, z⇤)p(z⇤)
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EXAMPLE

X Y

Z1

U

X Y

Z U2U1

𝜋

Z2

{Z1} is a valid adjustment set. {Z2} is not.
What about {Z1, Z2}?

The empty set is a valid adjustment set. {Z} is not!



DAG-IDENTIFIABILITY

I myself call “DAG-identifiability” the task of solving identifiability only with the 
graph structure. It is not the only way of doing it. See Niki’s talk later.

Another example, which allows for hidden confounding: the front-door criterion.

X YZ

U

Marginalization + back-door

Model doesn’t tell me those: 
must get rid of them

P
u p(y | z, u)p(u) =

P
x

P
u p(y | z, u)p(u | x)p(x)

=
P

x

P
u p(y | x, z, u)p(u | x, z)p(x)

=
P

x p(y | x, z)p(x)
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Marginalizations + independence constraints

p(y |do(x)) =
P

z p(z | x)
P

u p(y | z, u)p(u)
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DAG-IDENTIFIABILITY

We apply combinations of conditioning, marginalization, and independence 
constraints to get to any such a reduction, if one exists. 

Yes No

Shpitser and Pearl (2009). “Complete identification methods for the causal hierarchy”. JMLR



THE DO-CALCULUS AND THE ID ALGORITHM

There are ways of deriving such results using a handful of rules, and an algorithm 
that uses them to always provide the correct answer (including “I don’t know”).

The rules are called the do calculus (due to Judea Pear), the algorithm is known as 
the ID algorithm (due to Jian Tian with Pearl). The proof of completeness was done 
independently by Yimin Huang with Marco Valtorta, and by Ilya Shpitser with Pearl.

These are some tools that implement the ID algorithm and extensions:
­ Causal Fusion (graphical interface): https://causalfusion.net/
­ DAGitty (graphical interface and R package): http://www.dagitty.net
­ dosearch (R package): https://www.rdocumentation.org/packages/dosearch/versions/1.0.4

https://causalfusion.net/
http://www.dagitty.net/
https://www.rdocumentation.org/packages/dosearch/versions/1.0.4


THE THIRD LEVEL: 
COUNTERFACTUALS AND THE 
STRUCTURAL CAUSAL MODEL
Counterfactuals are baked into the 
primitives of Neyman-Rubin potential 
outcome modeling, including the consistency 
axiom.

Pearl’s Structural Causal Model (SCM) 
framework is a constructive way of deriving 
potential outcomes, independence 
assumptions, and consistency, from a more 
fundamental starting point: structural 
equations.



STRUCTURAL CAUSAL MODELS

For every vertex V in a causal graph, postulate a structural equation fv

where “parents” are the set of vertices pointing to V in the original graph.

Uv needs not to be a single variable. If anything, it can be infinite-dimensional! Such 
variables have no causes from “inside” the system, and sometimes are called 
exogenous. Confusingly, as they don’t need to be independent of each other. I’ll call 
then background variables.

We can represent the background factors in the graph too, with bi-directed edges 
among them or between the respective observables. 

V = fv(parents(V ), Uv)
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THREE WAYS OF REPRESENTING 
UNMEASURED CONFOUNDING

X Y

Z U

X Y

Z Uy

Ux

Uz

X Y

Z



WHAT DO WE GAIN, AND WHAT DO WE PAY?

As I’ve mentioned, potential outcomes are optional if we all we want is an 
interventional distribution.

Two main reasons for a SCM as opposed to a plain causal graphical model:

­ When we are genuinely interested in counterfactual estimands
­ To make easier to add stronger assumptions that aid identifiability (not fundamental, but handy)

As this is based in determinism, it requires assumptions that cannot be fully testable, 
unless we were to measure every single possible cause under the sun!



TWIN NETWORKS
A graphical construction of joint distributions of factuals and counterfactuals.

X Y

Z Uy

Ux

Uz

Y(x)x

z

Y(z)X(z)

Y (x) ?? X | Z
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Y (x) 6?? Y (z) 6?? Y (x, z)
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ESTIMANDS AND 
THE CAUSAL PIPELINE



ESTIMANDS

As in any statistical problem, the 
estimand is the unknown we want 
to estimate. It can be as simple as 
the expected outcome under 
intervention.

RCTs are not fundamental. They’re 
“just” a way of sampling data. It 
is an important and very useful 
device, but it doesn’t define the 
question in the same way that a 
sampling strategy doesn’t define 
the target of a survey.

Smoking Lung cancer

Common 
causesRandomize

Lung cancer

Common 
causes

Smoking



THE AVERAGE TREATMENT EFFECT AND 
OTHER ESTIMANDS
We saw the expected outcome under intervention:

This could as well be another summary of the distribution p(y | do(x)). 

We also saw the average treatment effect (ATE):

We can also ask the same questions conditioning on some pre-treatment outcomes, 
for instance the conditional average treatment effect (CATE):

E[Y | do(X = x)]� E[Y | do(X = x0)]

<latexit sha1_base64="zBGUiVZQs4aNzpg7yWcpAeHyR8s=">AAACHnicbVDLSsNAFJ3UV62vqEs3g0WsC0siFXUhFEVwWcE+JA1lMpm0QycPZiZiqe2PuPFX3LhQRHClf+OkzULbHrhwOOde7r3HiRgV0jB+tMzc/MLiUnY5t7K6tr6hb27VRBhzTKo4ZCFvOEgQRgNSlVQy0og4Qb7DSN3pXiZ+/Z5wQcPgVvYiYvuoHVCPYiSV1NKPmz6SHceBV9bd8HHohoUGPIcPBzY8hLOtfeW19LxRNEaA08RMSR6kqLT0r6Yb4tgngcQMCWGZRiTtPuKSYkYGuWYsSIRwF7WJpWiAfCLs/ui9AdxTigu9kKsKJBypfyf6yBei5zuqM7lYTHqJOMuzYumd2n0aRLEkAR4v8mIGZQiTrKBLOcGS9RRBmFN1K8QdxBGWKtGcCsGcfHma1I6KZql4dlPKly/SOLJgB+yCAjDBCSiDa1ABVYDBE3gBb+Bde9ZetQ/tc9ya0dKZbfAP2vcv2g6fzw==</latexit>

E[Y | do(X = x), Z = z]� E[Y | do(X = x0), Z = z]
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E[Y | do(X = x)]
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CONDITIONAL OUTCOMES

What about when Z happens after treatment? Is 

sensible? It depends what you want to do with it.

Do you want a prediction of Y taking place in the 
not-so-near future, after intervening on X and 
waiting for the event corresponding to Z? That’s fine.

X

Y

Z
E[Y | do(X = x), Z = z]
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CAUSAL EFFECTS

What about we want to compare outcomes under different levels of intervention? 
This is not only a prediction under an intervention, but a causal effect.

Will the CATE still make sense when Z is post-treatment? We have two ways of seeing 
why this doesn’t makes sense.

From a decision-theoretical perspective, it makes no sense to contrast decisions using 
information unavailable at the moment of the decision. 

From a counterfactual perspective, it also doesn’t make sense. For any single 
individual, Z(x) = fz(x, Uz). We can’t have Z(x) = Z(x’) for any non-trivial structural 
equation for a single individual. Hence, this CATE is just comparing two disjoint 
groups of people who happen to coincide on Z. This again is of dubious interest, to 
say the least. We say this type of estimand is “not a causal effect”.



CASE STUDY: SIMPSON’S PARADOX

Let’s give an example on the role a 
causal model clarifying the choice of 
particular estimands.

Consider Simpson’s paradox.

Would you recommend the drug? 
Which quantity is the relevant one? Figure 6.1, Pearl (2009). Causality, CUP

Pr(E | F,C) < Pr(E | F,¬C)
Pr(E | ¬F,C) < Pr(E | ¬F,¬C)

Pr(E | C) > Pr(E | ¬C)
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CASE STUDY: SIMPSON’S PARADOX

There is nothing paradoxical about association 
reversal.

What then, should guide us to select (actually, 
define!) the appropriate functional?

Notice: this has nothing to do with estimation. 
We assume we have access to the population 
distribution.

Pearl and Mackenzie (2018). The Book of Why, Chapter 6.



MODELING THE SYSTEM
Your assumptions and your question should be independent. Your question boils down 
to what is higher, Pr(E | do(C)) or Pr(E | do(¬ C))?

The answer = assumptions + question. What’s yours?

Figure 6.2, Pearl (2009). Causality, CUP



DISARMING THE (PSYCHOLOGICAL) PARADOX WITH 
CAUSAL REASONING
Why does it feel like a paradox?

Let our population have subpopulations F and ¬F. And let our treatment C not cause 
changes in the distribution of the subpopulations.

Then for outcome E, it is impossible to have, simultaneously,

Pr(F | do(C)) = Pr(F | do(¬C)) = Pr(F )
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Pr(E | do(C), F ) < Pr(E | do(¬C), F )
Pr(E | do(C),¬F ) < Pr(E | do(¬C),¬F )

Pr(E | do(C)) > Pr(E | do(¬C))
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LESSONS: THE CAUSAL PIPELINE

Keep this cheat sheet to help you formulate and solve your problems of interest. 
Consider separating the following components within your solution:

1. The Estimand: the quantity you want to learn. For example, the ATE.

2. The Model: assumptions linking observable signal to the Estimand by solving a 
(partial) identification problem. For instance, a SCM.

3. The Estimator: the way data is used to infer an estimate of the Estimand given the 
assumptions of the Model. For instance, regression is often used, as we will see.

4. The Algorithms: the computational procedures to solve the identification problem 
(mapping Model to Estimand), and to compute the output of the Estimator. 
For instance, the ID algorithm and optimization methods.

You will be a happier researcher if you separate these ingredients before 
pipelining them…



ESTIMATING CAUSAL EFFECTS:
THE SINGLE-SHOT, 

NO UNMEASURED CONFOUNDERS CASE



THE SINGLE-SHOT, 
MEASURED CONFOUNDERS CASE
This is by far the simplest and most common case: we have treatment X, outcome Y, 
and a bunch of covariates Z that satisfy the back-door criterion for p(y | do(x), z).

The most common causal effect of interest will cover is the ATE/CATE when X is binary, 
or more generally, when we have a “control” value x vs a “treatment” value x’.

Estimation in causal inference is related to, but not quite the same as, prediction. You 
maybe be interested in the expectation of the outcome of a treatment by itself, or 
just the contrast with respect to the baseline. This can motivate different methods.



THE TWO MAIN BUILDING BLOCKS 
Z can be high dimensional. What now?

We can start with one that focus on the treatment assignment model, p(x | z), or on 
the outcome model, p(y | x, z).

X Y

Z

X Y

Z



BUILDING ON THE 
TREATMENT ASSIGNMENT MODEL
Let’s do a sleigh of hand and define a quantity that is also a function of the model, 
the propensity score:

(yes, we can generalize it to non-binary X).

It is not hard to show that {e(z)} is a valid adjustment set for the back-door criterion!

Here is a very informal depiction of the idea:

e(z) = Pr(X = 1 | Z = z)
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e(Z)

𝜋



THE INVERSE PROBABILITY WEIGHTING (IPW) 
ADJUSTMENT
Recall the difference between p(y | x) and p(y | do(x)) as a function of the model:

The estimation problem is the fact that we don’t know any of these factors. This 
suggests the following idea:

1. Recognize that the data follows the distribution providing the factors on the left, above
2. That being the case, “reweight” the data by replacing the factor p(z | x) with p(z). 

p(y | x) =
X

z

p(y | x, z)p(z | x)
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p(y | do(x)) =
X

z

p(y | x, z)p(z)
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E[Y | do(X = 1)] =
X

y,z

y ⇥ p(y | 1, z)p(z)

=
X

x,y,z

I(x = 1)⇥ y ⇥ p(y | x, z)p(z)

=
X

x,y,z

I(x = 1)⇥ y ⇥ p(y | x, z)p(x | z)
p(x | z)p(z)

=
X

x,y,z

I(x = 1)⇥ y ⇥ 1

p(x | z) ⇥ p(x, y, z)

= E

I(X = 1)Y

p(X | Z)

�
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IPW IDENTITIES IN THE POPULATION back-door formula

a useful trick that will allows us 
to get rid of the outcome 
model!



AN ESTIMATE VIA IPW

The beauty of that derivation is that it completely disregards p(y | x, z). So we can 
get all we need from

1. The empirical distribution of (X, Y, Z)
That is, each data point in the training data get probability 1 / n, and anything out of the 
data gets probability zero

2. An estimate of p(x | z), that we can get by plug-in whatever method we want

[ATE = bE[Y | do(X = 1)]� bE[Y | do(X = 0)]

=
1

n

nX

i=1

I(x(i) = 1)y(i)

p̂(x(i) | z(i))
� 1

n

nX

i=1

I(x(i) = 0)y(i)

p̂(x(i) | z(i))
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ATTACKING THE PROBLEM WITH THE 
OUTCOME MODEL
This is more straightforward. Say that

Therefore

E[Y | x, z] = f(x, z)
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E[Y | do(x)] =
X

y,z

y ⇥ p(y |x, z)p(z)

=
X

z

E[Y | x, z]p(z)

=
X

z

f(x, z)p(z)
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ESTIMATION

Again, we can get an estimate by just using the empirical distribution (it suffices to be 
the one of Z alone) and plugging-in an estimate of the regression function.

[ATE = bE[Y | do(X = 1)]� bE[Y | do(X = 0)]

=
1

n

nX

i=1

f̂(1, z(i))� 1

n

nX

i=1

f̂(0, z(i))
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SO, WHICH ONE IS BEST?

Each is theoretically sound, and each can fail badly.

Misspecification can affect both, but empirically it tends to affect outcome models 
more strongly. In many cases, it is also the case that in some problems we know the 
treatment assignment model (when it is actually logged. We will see examples in 
bandit models later one). 

IPW can suffer of major variance because of the denominator. Outcome models are 
less prone to high variance, but they cannot escape the problem of lack of overlap.



THE LACK OF OVERLAP PROBLEM

We saw that causal learning from observational data is a type of extrapolation 
problem. But that’s only half of the story.

Another major source of extrapolation typically arises by the mere fact that X and Z
are associated in observational data. 

That’s because a functional like the ATE requires evaluating combinations of (X, Z) 
that do not need to have much support in the observational data!

When reading causal inference books/papers/package documentations you will find 
one typical assumption, the overlap assumption:

Pr(X = x | z) > 0 for all points (x, z) of interest
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THE LACK OF OVERLAP PROBLEM

This looks inoffensive but hides something potentially much more harmful. When in the 
data this probability is close to zero (or 1), in the corresponding ATE estimate

at least one of the two terms above might be meaningless, in the sense that the 
point estimate might be pretty much a wild extrapolation.

This will definitely be the case for IPW. For the outcome model approach, it may be 
OK if for example we are using a linear model that we believe holds for all plausible 
combinations of X and Y. But would you trust this assumption?

[ATE = bE[Y | do(X = 1)]� bE[Y | do(X = 0)]
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EXAMPLE: REGRESSION TREES

Hill (2011) “Bayesian nonparametric modeling for causal 
inference”, Journal of Computational and Graphical Statistics.

Z

X = 0

X = 1

Linearity within data can be falsified, but linearity in extrapolation can’t.

Ricardo Silva

Ricardo Silva

Ricardo Silva

Ricardo Silva



NUISANCE PARAMETERS IN CAUSAL INFERENCE

Nuisance parameter is a term in Statistics that can be roughly described as 
“parameters we don’t care about, but which are there because they define/identify 
the ones we do care about.”

The most famous example might be the variance of the error term in a problem 
where all we care is the regression function. Likelihoods by definition will require the 
nuisance variance. Empirical Risk Minimization can get away without it.

It should separate inference of nuisances from inference of the parameters of interest 
as much as possible. This is particularly the case in many causal inference problems 
where the effects might be weak and the dimensionality of Z high.



EXAMPLE: LIKELIHOOD-BASED CATE IN 
LINEAR MODELS
It doesn’t get any simpler than that.

Consider the following model for the outcome regression with a possible continuous 
treatment X:

It is not difficult to show that for any Δ,

So, not only the variance of the error term would be a nuisance, but the entire vector 
𝛽 is! What are the implications? Pretty minimal if Z is small dimensional, but for high-
dimensional Z we will want to do some sort of regularization/Bayesian modelling.

Y = ↵x+ �T z + ✏
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E[Y | do(X = x), z]� E[Y | do(X = x��), z] = ↵�
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REGULARIZATION… AT A PRICE

When Z is high dimensional, we don’t really have much of a choice but to regularize 
𝛽. For instance, by ridge regression (or the Bayesian related idea of putting 
Gaussian priors on parameters).

This is will bias the parameters, in the technical sense. More precisely,

bias(↵̂rr) = �((xTx)�1xTZ)(Ip + ZT (Z� Ẑx))
�1�

<latexit sha1_base64="MqedPaTqPppwOZ9qCy1S8YGjnf8="></latexit>

Bias of ridge regression (rr): 
difference between true value 
and estimate, in expectation

n x p matrix of covariates

coefficients of one-at-a-time 
regression of each Zj on x

n x p matrix of residuals of the 
one-at-a-time regression

Hahn et al. (2018). “Regularization and confounding in linear 
regression for treatment effect estimation”. Bayesian Analysis.



UNPACKING IT

The most striking feature of this bias is that the more strongly associated X and Z are, 
and the higher the dimensionality of Z is, the worse the bias is.

This wouldn’t matter that much if the goal was purely predictive. We don’t care about 
the bias of a particular parameter, but the total bias + variance across all 
parameters forming our prediction function.

But observational studies are the perfect storm!
­ X and Z are associated, because otherwise Z wouldn’t matter as a confounder
­ We should expect many confounders, so Z is naturally high-dimensional
­ We care mostly about the causal effect here, so what happens to the other parameters is irrelevant as 

long as I get a good causal effect
­ But we can’t just completely ignore the other parameters, because otherwise our causal effect 

parameter is not even defined



MITIGATING THE BIAS

The main idea behind what I’ll describing is better intuitively understood in linear 
models, but it forms the basis of many methods: 

Use the treatment assignment model to modify the problem, so that the dependency 
between X and Z doesn’t play a major role in a regression formulation of the back-door 
formula.

What does it mean? In the linear case, we can reparameterise the model so that we 
simulate an alternative regression function that still encodes the causal parameter…. 
but doesn’t regress on X (directly).



REPARAMETERIZING THE LINEAR MODEL

X Y

Z

𝜖

Y

Z

𝜖

X Y

Z

e(Z) = 
𝛾TZ

𝜋

That is,



REPARAMETERIZING THE LINEAR MODEL

solve Bayesian/regularized regression for the (Rx, Z) data, get alpha

Y = ↵(X � �TZ) + (� + ↵�)TZ + ✏y = ↵Rx + �↵Z + ✏y

<latexit sha1_base64="QlX4A6ECQ4tSslbsf1PlVYAaD20="></latexit>



NON-LINEAR MODELS

What would the equivalent be for non-linear models, particularly when the treatment 
is discrete?

The simplest idea is to just include the propensity score as yet another covariate for 
your regression, then do regression. It’s not the “optimal” in a theoretical sense, but 
it’s simple and may be just good enough.

In general, we will want to separate the “stuff we care” from “the stuff that we don’t 
care about”. Straightforward Likelihood + prior/regularization + Bayesian/cross-
validation crank is not that off-the-shelf here.



GOING BEYOND NAÏVE LEARNING: NON-LINEARITIES 
WITH BINARY TREATMENT, FOR SIMPLICITY
Without loss of generality, we can rewrite the outcome model as 

for x in {0, 1}. So CATE can be given by

Two things come to mind:
­ The response function                         can be complex and non-linear while the causal effect 𝜏(z) can 

be smooth and very close to linear in z.
­ In many applications, we don’t even care about the baseline response f0(z). 

E[Y | do(x), z]
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E[Y | x, z] = f0(z) + x⌧(z)

<latexit sha1_base64="pzj8GwJ6LO/cH2HrJsPSuJZpYxQ=">AAACEHicbZDLSgMxFIYz9VbrbdSlm2ARK0qZkYK6EIoiuKxgL9IOQybNtKGZC0lGerF9Aze+ihsXirh16c63MdPOQlt/CHz85xxyzu+EjAppGN9aam5+YXEpvZxZWV1b39A3tyoiiDgmZRywgNccJAijPilLKhmphZwgz2Gk6nQu43r1nnBBA/9W9kJieajlU5diJJVl6/sND8m248Cr+t3oYdQ9gn0LnkPXNnL9A3gIuw2JIoW2njXyxlhwFswEsiBRyda/Gs0ARx7xJWZIiLpphNIaIC4pZmSYaUSChAh3UIvUFfrII8IajA8awj3lNKEbcPV8Ccfu74kB8oToeY7qjNcX07XY/K9Wj6R7ag2oH0aS+HjykRsxKAMYpwOblBMsWU8BwpyqXSFuI46wVBlmVAjm9MmzUDnOm4X82U0hW7xI4kiDHbALcsAEJ6AIrkEJlAEGj+AZvII37Ul70d61j0lrSktmtsEfaZ8/J1aaxA==</latexit>

E[Y | do(X = 1), z]� E[Y | do(X = 0), z] = ⌧(z)
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EXAMPLE

Kunzel et al. (2019) PNAS, 
https://www.pnas.org/content/116/10/4156

https://www.pnas.org/content/116/10/4156


CUTTING TO THE CHASE: R-LEARNER

The idea of the R-learner is that we don’t care about the inner structure of the 
contribution from Z, just its black-box behavior. So fit it separately!

Remember Leo Breiman’s Rashomon effect: too many widely different model 
structures add up to (nearly) the same black-box behavior. It is a problem when we 
do care about “opening up” part of the black-box.

The next key idea: how to separate the nuisances “as much as we can” out of the 
causal effect.

Nie and Wager (2020), Biometrika, to appear https://arxiv.org/pdf/1712.04912.pdf

https://arxiv.org/pdf/1712.04912.pdf


THE NUISANCES

The high-dimensional contribution from Z can be accounted for in the following two 
regression functions:

The are linked to the model for Y given X and Z by the fact that if

where error is independent of X and Z and zero mean, then we can condition on X
and Z in stages.

e(z) = Pr(X = 1 | z)
m(z) = E[Y | z]

<latexit sha1_base64="2bcT8HdhBdEu7+sgHEnn0rPQkUc="></latexit>

Y = f0(Z) +X⌧(Z) + error
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GLUING THEM TOGETHER

So, we have two ways of writing m(z). Why do we care? Because

Can you guess where we are going?

E[Y | z] = E[f0(Z) | z] + E[X⌧(Z) | z] + E[error | z]
m(z) = f0(z) + e(z)⌧(z)

<latexit sha1_base64="wANvbVVpqh7a5Q3dADa2l3s7AO8="></latexit>

Y �m(Z) = f0(Z) +X⌧(Z) + error �m(Z)
= (X � e(Z))⌧(Z) + error

<latexit sha1_base64="oOXF5bsdHPjDhM6tQHfAn9aT7mo="></latexit>



THE R LEARNER

1. Estimate

2. Create pseudo-data  

3. Apply any optimization method you want to solve

using whatever training and representation of 𝜏 we want, including a deep neural net. 

This can be implemented by wrapping up standard algorithms.

m̂(z), ê(z)
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Ỹ (i) = Y (i) � m̂(Z(i)), X̃(i) = X(i) � ê(Z(i))
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⌧̂  argmin⌧

dX

i=1

(Ỹ (i) � X̃(i)⌧(Z(i)))2
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CROSS-FITTING

Is this it? Almost there.

We don’t want to reuse the same data that was used to build the pseudo-data in 
Steps 1-2 in Step 3. But we can just do cross-fitting:

­ Split the data in k folds just like we do with cross-validation.
­ Use the kth fold for Step 3, while the remaining is used for Steps 1-2.
­ Average over the k estimates to produce the final estimate.

The usual Bayesian way of doing it would be dubious from an orthodox perspective, 
but see the cut operator in a software package like BUGs.



WHEN IDENTIFIABILITY FAILS

In some cases we can get bounds on the causal effect (again, Niki’s talk FTW).

The most well-known case is the instrumental variable structure.

X YZ

U

flower(pxyz(·, ·, ·))  ATE  fupper(pxyz(·, ·, ·))
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IDENTIFIABILITY BY PRIORS: IF YOU MUST DO IT,
TAKE IT SERIOUSLY

Silva and Evans (2006). “Causal inference through a witness protection program.” JMLR



DO INFERENCE ON THE BOUNDS, INSTEAD

Silva and Evans (2006). “Causal inference through a witness protection program.” JMLR



CONCLUSION



CAUSAL INFERENCE AND THE SCIENTIFIC METHOD

https://www.youtube.com/watch?v=0KmimDq4cSU&feature=youtu.be

“First, we guess it. Then we compute the 
consequences of the guess… to see what it 
would imply. Then we compare the computation 
results to Nature or we say compare to 
experiment or experience, compare it directly 
with observations to see if it works.”

Richard Feynman

https://www.youtube.com/watch?v=0KmimDq4cSU&feature=youtu.be


IF YOU ARE A METHODOLOGIST, REMEMBER:

The domain expert has the last word. Not you.

As machine learners/AI folks, our primary goal should be to provide languages to 
express assumptions, algorithms to compute the consequences of such assumptions, and 
inferential procedures to report the resulting uncertainty and test what can be tested.

If a client/VC/reviewer complains your method gives too much freedom for a domain 
expert to put (consequential) assumptions in, tell them politely to find a new day job.



IF YOU ARE (ALSO) THE “TRUE” SCIENTIST IN 
CHARGE, REMEMBER:

Be aware that the result of an observational study is only as good as its assumptions.

“One-size-fits-all” tools, that is, those that work only under a specific type of 
assumptions, are fine if properly understood. But are you adopting them for 
convenience or because they are appropriate? 

Can you take more than one starting point and see how your conclusions vary? If not, 
why not?



WHAT I DID NOT COVER
Sequential problems a.k.a. reinforcement learning. Off-policy evaluation in the causal 
inference literature started back in the mid-80s. See for instance,
­ Hernan and Robins (2020) Causal Inference: What If. Chapman & Hall. Draft at 

https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
­ Chakraborty and Moodie (2012). Statistical Methods for Dynamic Treatment Regimes: Reinforcement 

Learning, Causal Inference, and Personalized Medicine. Springer.

Many (many) other ways of achieving identifiability and their respective learning 
methods (more on instrumental variables, proxies, differences-in-differences, synthetic 
controls, discontinuity designs, matching etc.) and combinations of regimes

Causal discovery, in its many guises and families of assumptions

https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/


THANK YOU


