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Gaussian processes

Definition
A Gaussian process (GP) is a collection of random variables, any finite number of
which have a joint Gaussian distribution.

Nonparametric Regression Model
I Prior: f (x) ⇠ GP(m(x), k(x, x0)), meaning (f (x1), . . . , f (xN)) ⇠ N (µ,K),

with µi = m(xi) and Kij = cov(f (xi), f (xj)) = k(xi, xj).
GP posteriorz }| {

p(f (x)|D) /
Likelihoodz }| {

p(D|f (x))
GP priorz }| {

p(f (x))
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Example: RBF Kernel

kRBF(x, x0) = cov(f (x), f (x0))

= a2 exp(� ||x � x0||2

2`2 )
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The Power of Non-Parametric Representations

Deriving the RBF Kernel
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I Let cJ = log J, c1 = � log J, and ci+1 � ci = �c = 2 log J
J , and J ! 1, the

kernel in Eq. (7) becomes a Riemann sum:

k(x, x0) = lim
J!1
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Deriving the RBF Kernel
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I Let cJ = log J, c1 = � log J, and ci+1 � ci = �c = 2 log J
J , and J ! 1, the

kernel in Eq. (7) becomes a Riemann sum:

k(x, x0) = lim
J!1
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�i(x)�i(x0) =
Z c1

c0

�c(x)�c(x0)dc (8)

I By setting c0 = �1 and c1 = 1, we spread the infinitely many basis
functions across the whole real line, each a distance �c ! 0 apart:

k(x, x0) =
Z 1

�1
exp(� (x � c)2

2`2 ) exp(� (x0 � c)2

2`2 )dc (9)

=
p
⇡`�

2 exp(� (x � x0)2

2(
p

2`)2
) / kRBF(x, x0) . (10)
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Inference using an RBF kernel

I Specify f (x) ⇠ GP(0, k).

I Choose kRBF(x, x0) = a2
0 exp(� ||x�x0||2

2`2
0

). Choose values for a0 and `0.

I Observe data, look at the prior and posterior over functions.
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Inference using an RBF kernel

Increase the length-scale `.
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Learning and Model Selection

p(Mi|y) =
p(y|Mi)p(Mi)

p(y)
(11)

We can write the evidence of the model as

p(y|Mi) =

Z
p(y|f,Mi)p(f)df (12)

              y
All Possible Datasets

p(
y|

M
)
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Gaussian processes for Machine Learning. Rasmussen, C.E. and Williams, C.K.I. MIT Press, 2006.
Bayesian Methods for Adaptive Models. MacKay, D.J. PhD Thesis, 1992.
Covariance Kernels for Fast Automatic Pattern Discovery and Extrapolation with Gaussian Processes.
Wilson, A.G. PhD Thesis, 2014.
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Machine Learning for Econometrics
(The Start of My Journey...)

Autoregressive Conditional Heteroscedasticity (ARCH)
2003 Nobel Prize in Economics

y(t) = N (y(t); 0, a0 + a1y(t � 1)2)
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Machine Learning for Econometrics

Autoregressive Conditional Heteroscedasticity (ARCH)
2003 Nobel Prize in Economics

y(t) = N (y(t); 0, a0 + a1y(t � 1)2)

Gaussian Copula Process Volatility (GCPV)
(My First PhD Project)

y(x) = N (y(x); 0, f (x)2)

f (x) ⇠ GP(m(x), k(x, x0))

Copula processes. Wilson, A.G., Ghahramani, Z. NeurIPS 2010.
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Machine Learning for Econometrics

Autoregressive Conditional Heteroscedasticity (ARCH)
2003 Nobel Prize in Economics

y(t) = N (y(t); 0, a0 + a1y(t � 1)2)

Gaussian Copula Process Volatility (GCPV)
(My First PhD Project)

y(x) = N (y(x); 0, f (x)2)

f (x) ⇠ GP(m(x), k(x, x0))

I Can approximate a much greater range of variance functions
I Operates on continuous inputs x
I Can effortlessly handle missing data
I Can effortlessly accommodate multivariate inputs x (covariates other than time)
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Autoregressive Conditional Heteroscedasticity (ARCH)
2003 Nobel Prize in Economics

y(t) = N (y(t); 0, a0 + a1y(t � 1)2)

Gaussian Copula Process Volatility (GCPV)
(My First PhD Project)

y(x) = N (y(x); 0, f (x)2)

f (x) ⇠ GP(m(x), k(x, x0))

I Can approximate a much greater range of variance functions
I Operates on continuous inputs x
I Can effortlessly handle missing data
I Can effortlessly accommodate multivariate inputs x (covariates other than time)
I Observation: performance extremely sensitive to even small changes in

kernel hyperparameters

14 / 52



But what about the kernel?

I If hypers like length-scale have a substantial effect on performance, then surely
kernel selection is practically crucial!

I But many papers default to the RBF kernel, without even treating the kernel as
a major design decision.

I Aren’t these supposed to be principled models without challenging design
decisions, unlike neural networks? What is going on here???

I We need to automate kernel selection!
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Gaussian Processes and Neural Networks

“How can Gaussian processes
possibly replace neural networks?
Have we thrown the baby out with
the bathwater?” (MacKay, 1998)

Introduction to Gaussian processes. MacKay, D. J. In Bishop, C. M. (ed.), Neural Networks and Machine
Learning, Chapter 11, pp. 133-165. Springer-Verlag, 1998.
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Gaussian Process Regression Networks
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Gaussian process regression networks. Wilson, A.G., Knowles, D.A., Ghahramani, Z. ICML 2012.
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The Inverse Wishart Process

Introduce a completely flexible Bayesian non-parametric distribution over kernels:

c ⇠ IWP(⌫, k✓) (13)
y|c ⇠ GP(�, (⌫ � 2)c) (14)

c is as an infinite dimensional matrix, with any finite dimensional covariance matrix
being a marginal of this matrix with an inverse Wishart distribution. This prior has
support for all positive definite kernels with mean equal to k✓ .

Student-t processes as alternatives to GPs. Shah, A., Wilson, A.G., Ghahramani, Z. AISTATS 2014.
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The Inverse Wishart Process

Introduce a completely flexible Bayesian non-parametric distribution over kernels:

c ⇠ IWP(⌫, k✓) (15)
y|c ⇠ GP(�, (⌫ � 2)c) (16)

c is as an infinite dimensional matrix, with any finite dimensional covariance matrix
being a marginal of this matrix with an inverse Wishart distribution. This prior has
support for all positive definite kernels with mean equal to k✓ .

I The predictive distribution is

p(y|x,D) =

Z
p(y|x, c)p(c|D)dc (17)
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The Inverse Wishart Process

Introduce a completely flexible Bayesian non-parametric distribution over kernels:

c ⇠ IWP(⌫, k✓) (18)
y|c ⇠ GP(�, (⌫ � 2)c) (19)

c is as an infinite dimensional matrix, with any finite dimensional covariance matrix
being a marginal of this matrix with an inverse Wishart distribution. This prior has
support for all positive definite kernels with mean equal to k✓ .

I The predictive distribution is

p(y|x,D) =

Z
p(y|x, c)p(c|D)dc (20)

I Perhaps surprisingly, we can analytically marginalize this extremely flexible
posterior over kernels.
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The Inverse Wishart Process

Introduce a completely flexible Bayesian non-parametric distribution over kernels:

c ⇠ IWP(⌫, k✓) (21)
y|c ⇠ GP(�, (⌫ � 2)c) (22)

c is as an infinite dimensional matrix, with any finite dimensional covariance matrix
being a marginal of this matrix with an inverse Wishart distribution. This prior has
support for all positive definite kernels with mean equal to k✓ .

I The predictive distribution is

p(y|x,D) =

Z
p(y|x, c)p(c|D)dc (23)

I Perhaps surprisingly, we can analytically marginalize this extremely flexible
posterior over kernels.

I The result is a Student�t distribution, with a predictive mean exactly equal to
what we would get using a GP with kernel k✓ .
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The Inverse Wishart Process

Introduce a completely flexible Bayesian non-parametric distribution over kernels:

c ⇠ IWP(⌫, k✓) (24)
y|c ⇠ GP(�, (⌫ � 2)c) (25)

c is as an infinite dimensional matrix, with any finite dimensional covariance matrix
being a marginal of this matrix with an inverse Wishart distribution. This prior has
support for all positive definite kernels with mean equal to k✓ .

I The predictive distribution is

p(y|x,D) =

Z
p(y|x, c)p(c|D)dc (26)

I Perhaps surprisingly, we can analytically marginalize this extremely flexible
posterior over kernels.

I The result is a Student-t distribution, with a predictive mean exactly equal to
what we would get using a GP with kernel k✓ .

I But the predictive uncertainty does depend on the data.
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The Inverse Wishart Process
Introduce a completely flexible Bayesian non-parametric distribution over kernels:

c ⇠ IWP(⌫, k✓) (27)
y|c ⇠ GP(�, (⌫ � 2)c) (28)

c is as an infinite dimensional matrix, with any finite dimensional covariance matrix
being a marginal of this matrix with an inverse Wishart distribution. This prior has
support for all positive definite kernels with mean equal to k✓ .

I The predictive distribution is

p(y|x,D) =

Z
p(y|x, c)p(c|D)dc (29)

I The result is a Student-t distribution, with a predictive mean exactly equal to
what we would get using a GP with kernel k✓ .

I Shockingly, the marginal predictive distribution is the same as we get for
the wildly different generative model:

a�1 ⇠ Gamma(
⌫

2
,

⇢

2
) (30)

y|a ⇠ GP(�, a(⌫ � 2)k✓/⇢) (31)
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Heteroscedasticity revisited...

Which of these models do you prefer, and why?

Choice 1

y(x)|f (x), g(x) ⇠ N (y(x); f (x), g(x)2)

f (x) ⇠ GP, g(x) ⇠ GP

Choice 2

y(x)|f (x), g(x) ⇠ N (y(x); f (x)g(x), g(x)2)

f (x) ⇠ GP, g(x) ⇠ GP
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Inductive Biases

I While the inverse Wishart process is flexible, its inductive biases are wrong.
I It is challenging to say anything about the covariance function of a stochastic

process from a single draw if no assumptions are made.
I If we allow the covariance between any two points in the input space to arise

from any positive definite function, with equal probability, then we gain
essentially no information from a single realization.

I Most commonly one assumes a restriction to stationary kernels, meaning that
covariances are invariant to translations in the input space.
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Spectral Mixture Kernels for Pattern Discovery

Let ⌧ = x � x0 2 RP. From Bochner’s Theorem,

k(⌧) =
Z

RP
S(s)e2⇡isT⌧ds (32)

For simplicity, assume ⌧ 2 R1 and let

S(s) = [N (s;µ,�2) +N (�s;µ,�2)]/2 . (33)

Then

k(⌧) = exp{�2⇡2
⌧

2
�

2} cos(2⇡⌧µ) . (34)

More generally, if S(s) is a symmetrized mixture of diagonal covariance Gaussians
on Rp, with covariance matrix Mq = diag(v(1)

q , . . . , v(P)
q ), then

k(⌧) =
QX

q=1

wqcos(2⇡⌧T
µq)

PY

p=1

exp{�2⇡2
⌧

2
p v(p)

q }. (35)

Gaussian Process Kernels for Pattern Discovery and Extrapolation with Gaussian Processes.
Wilson et. al, 2012
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GP Model for Pattern Extrapolation

I Observations y(x) ⇠ N (y(x); f (x),�2) (can easily be relaxed).
I f (x) ⇠ GP(0, kSM(x, x0|✓)) (f (x) is a GP with SM kernel).
I kSM(x, x0|✓) can approximate many different kernels with different settings of

its hyperparameters ✓.
I Learning involves training these hyperparameters through maximum marginal

likelihood optimization (using BFGS)

log p(y|✓,X) =

model fitz }| {
�1

2
yT(K✓ + �

2I)�1y�

complexity penaltyz }| {
1
2

log |K✓ + �

2I|�N
2

log(2⇡) . (36)

I Once hyperparameters are trained as ✓̂, making predictions using
p(f⇤|y,X⇤, ✓̂), which can be expressed in closed form.
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Function Learning Example
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Results of Representation Learning
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Results, Airline Passengers
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Results, CO2
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What do we need for large scale pattern extrapolation?

 

 

(a) Train
 

 

(b) Test (c) Full (d) GPatt (e) SSGP (f) FITC

(g) GP-RBF (h) GP-MA (i) GP-RQ (j) GPatt Initialisation

(k) Train (l) GPatt (m) GP-MA (n) Train (o) GPatt (p) GP-MA

Fast kernel learning for multidimensional pattern extrapolation. Wilson et. al, NeurIPS 2014.
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More Patterns

(a) Rubber mat (b) Tread plate (c) Pores

(d) Wood (e) Chain mail
 

 

(f) Cone
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Scalable Exact Gaussian Processes

I By developing stochastic Krylov methods that exploit parallel cores in GPUs
we can now run exact GPs on millions of points.

I Implemented in the new library GPyTorch: gpytorch.ai

GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration.
Gardner, J. R., Pleiss, G., Bindel, D., Weinberger, K. Q., Wilson, A. G. NeurIPS, 2018.
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Exact Gaussian Processes on a Million Data Points

I Results show the benefit of retaining a non-parametric representation.

Exact Gaussian processes on a million data points.
Wang, K.A., Pleiss, G., Gardner, J., Tyree, S., Weinberger, K., Wilson, A.G. NeurIPS, 2019.
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Deep Kernel Learning

Deep kernel learning combines the inductive biases of deep learning architectures
with the non-parametric flexibility of Gaussian processes.
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Base kernel hyperparameters ✓ and deep network hyperparameters w are
jointly trained through the marginal likelihood objective.

Deep Kernel Learning. Wilson, A.G., Hu, Z., Salakhutdinov, R., Xing, E.P. AISTATS, 2016
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Face Orientation Extraction

36.15-43.10 -3.4917.35 -19.81

Training data

Test data

Label

Figure: Top: Randomly sampled examples of the training and test data. Bottom: The
two dimensional outputs of the convolutional network on a set of test cases. Each
point is shown using a line segment that has the same orientation as the input face.
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Learning Flexible Non-Euclidean Similarity Metrics
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Figure: Left: The induced covariance matrix using DKL-SM (spectral mixture)
kernel on a set of test cases, where the test samples are ordered according to the
orientations of the input faces. Middle: The respective covariance matrix using
DKL-RBF kernel. Right: The respective covariance matrix using regular RBF
kernel. The models are trained with n = 12, 000.
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Step Function

−1 −0.5 0 0.5 1
4

6

8

10

12

14

16

18

Input X

O
ut

pu
t Y

 

 
GP(RBF)
GP(SM)
DKL−SM
Training data

Figure: Recovering a step function. We show the predictive mean and 95% of the
predictive probability mass for regular GPs with RBF and SM kernels, and DKL with
SM base kernel.
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Deep Kernel Learning for Autonomous Driving
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Learning scalable deep kernels with recurrent structure.
Al-Shedivat, M., Wilson, A.G., Saatchi, Y., Hu, Z., Xing, E.P. JMLR, 2017.
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Kernels from Infinite Bayesian Neural Networks
I The neural network kernel (Neal, 1996) is famous for triggering research on

Gaussian processes in the machine learning community.
Consider a neural network with one hidden layer:

f (x) = b +
JX

i=1

vih(x; ui) . (37)

I b is a bias, vi are the hidden to output weights, h is any bounded hidden unit
transfer function, ui are the input to hidden weights, and J is the number of
hidden units. Let b and vi be independent with zero mean and variances �2

b and
�

2
v/J, respectively, and let the ui have independent identical distributions.

Collecting all free parameters into the weight vector w,

Ew[f (x)] = 0 , (38)

cov[f (x), f (x0)] = Ew[f (x)f (x0)] = �

2
b +

1
J

JX

i=1

�

2
vEu[hi(x; ui)hi(x0; ui)] , (39)

= �

2
b + �

2
vEu[h(x; u)h(x0; u)] . (40)

We can show any collection of values f (x1), . . . , f (xN) must have a joint Gaussian
distribution using the central limit theorem.
Bayesian Learning for Neural Networks. Neal, R. Springer, 1996.

43 / 52



Neural Network Kernel

f (x) = b +
JX

i=1

vih(x; ui) . (41)

I Let h(x; u) = erf(u0 +
PP

j=1 ujxj), where erf(z) = 2p
⇡

R z
0 e�t2 dt

I Choose u ⇠ N (0,⌃)

Then we obtain

kNN(x, x0) =
2
⇡

sin(
2x̃T⌃x̃0p

(1 + 2x̃T⌃x̃)(1 + 2x̃0T⌃x̃0)
) , (42)

where x 2 RP and x̃ = (1, xT)T.

44 / 52



Neural Network Kernel

kNN(x, x0) =
2
⇡

sin(
2x̃T⌃x̃0p

(1 + 2x̃T⌃x̃)(1 + 2x̃0T⌃x̃0)
) (43)

Set ⌃ = diag(�0,�). Draws from a GP with a neural network kernel with varying �:

Gaussian processes for Machine Learning. Rasmussen, C.E. and Williams, C.K.I. MIT Press, 2006
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Neural Network Kernel

kNN(x, x0) =
2
⇡

sin(
2x̃T⌃x̃0p

(1 + 2x̃T⌃x̃)(1 + 2x̃0T⌃x̃0)
) (44)

Set ⌃ = diag(�0,�). Draws from a GP with a neural network kernel with varying �:

Question: Is a GP with this kernel doing representation learning?

Gaussian processes for Machine Learning. Rasmussen, C.E. and Williams, C.K.I. MIT Press, 2006
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Neural Tangent Kernels

I Recent work [e.g., 1, 2, 3] deriving neural tangent kernels from infinite neural
network limits, with promising results.

I Closely related to Radford Neal’s [4] result showing a Bayesian neural network
with infinitely many hidden units converges to a Gaussian process.

I Note that most kernels from infinite neural network limits have a fixed
structure. On the other hand, standard neural networks essentially learn a
similarity metric (kernel) for the data. Learning a kernel amounts to
representation learning. Bridging this gap is interesting future work.

[1] Neural tangent kernel: convergence and generalization in neural networks. Jacot et. al, NeurIPS 2018.
[2] On exact computation with an infinitely wide neural net. Arora et. al, NeurIPS 2019.
[3] Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks. Arora et. al, arXiv 2019.
[4] Bayesian Learning for Neural Networks. Neal, R. Springer, 1996.
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Functional Kernel Learning

See, e.g.,
[1] Function-Space Distributions over Kernels.
Benton, G., Maddox, W. J., Salkey, J., Wilson, A. G. NeurIPS, 2019.
[2] Covariance Kernels for Fast Automatic Pattern Discovery and Extrapolation with Gaussian Processes.
Wilson, 2014.
[3] Bayesian Nonparametric Spectral Estimation. Tobar, F, NeurIPS 2018.
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Functional Kernel Learning (Model Specification)

Function-Space Distributions over Kernels.
Benton, G., Maddox, W. J., Salkey, J., Wilson, A. G. NeurIPS, 2019.
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Results (Sinc)

Function-Space Distributions over Kernels.
Benton, G., Maddox, W. J., Salkey, J., Wilson, A. G. NeurIPS, 2019.
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Texture Extrapolation
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Multi-Task Learning
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