Scalability of Gaussian Process

Zhenwen Dai

Spotify

14 September 2021 @GPSS 2021

1/59

Outline

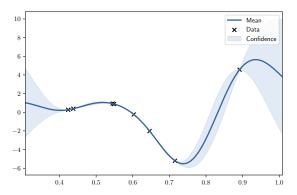
- What is the scalability issue of Gaussian Process?
- Numerical solution
- Model/Inference Approximation
- Mini-batch Training
- How to draw a function sample?

Gaussian Process Regression

Input and Output Data:

$$\mathbf{y} = (y_1, \dots, y_N), \quad \mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_N)^{\mathsf{T}}$$

$$p(\mathbf{y}|\mathbf{f}) = \mathcal{N}(\mathbf{y}|\mathbf{f}, \sigma^2 \mathbf{I}), \quad p(\mathbf{f}|\mathbf{X}) = \mathcal{N}(\mathbf{f}|0, \mathbf{K}(\mathbf{X}, \mathbf{X}))$$



Behind a Gaussian process fit

Maximum likelihood estimate of the hyper-parameters.

$$\theta^* = \arg\max_{\theta} \log p(\mathbf{y}|\mathbf{X}, \theta) = \arg\max_{\theta} \log \mathcal{N}\left(\mathbf{y}|0, \mathbf{K} + \sigma^2 \mathbf{I}\right)$$

 Prediction on a test point given the observed data and the optimized hyper-parameters.

$$p(\mathbf{f}_*|\mathbf{X}_*, \mathbf{y}, \mathbf{X}, \theta) =$$

$$\mathcal{N}\left(\mathbf{f}_*|\mathbf{K}_*(\mathbf{K} + \sigma^2 \mathbf{I})^{-1}\mathbf{y}, \mathbf{K}_{**} - \mathbf{K}_*(\mathbf{K} + \sigma^2 \mathbf{I})^{-1}\mathbf{K}_*^{\top}\right)$$

How to implement the log-likelihood (1)

• Compute the covariance matrix **K**:

$$\mathbf{K} = \begin{pmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & \cdots & k(\mathbf{x}_1, \mathbf{x}_N) \\ \vdots & \ddots & \vdots \\ k(\mathbf{x}_N, \mathbf{x}_1) & \cdots & k(\mathbf{x}_N, \mathbf{x}_N) \end{pmatrix}$$

where
$$k(\mathbf{x}_i, \mathbf{x}_j) = \gamma \exp\left(-\frac{1}{2l^2}(\mathbf{x}_i - \mathbf{x}_j)^{\top}(\mathbf{x}_i - \mathbf{x}_j)\right)$$

• The complexity is $O(N^2Q)$.

How to implement the log-likelihood (2)

Plug in the log-pdf of multi-variate normal distribution:

$$\log p(\mathbf{y}|\mathbf{X}) = \log \mathcal{N} \left(\mathbf{y}|0, \mathbf{K} + \sigma^2 \mathbf{I} \right)$$

$$= -\frac{1}{2} \log |2\pi (\mathbf{K} + \sigma^2 \mathbf{I})| - \frac{1}{2} \mathbf{y}^{\top} (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \mathbf{y}$$

$$= -\frac{N}{2} N \log 2\pi - \sum_{i} \log \mathbf{L}_{ii} - \frac{1}{2} ||\mathbf{L}^{-1} \mathbf{y}||^2$$

- ullet Take a Cholesky decomposition: $\mathbf{L} = \mathtt{chol}(\mathbf{K} + \sigma^2 \mathbf{I})$, such that $\mathbf{K} + \sigma^2 \mathbf{I} = \mathbf{L} \mathbf{L}^{\top}$.
- The computational complexity is $O(N^3 + N^2 + N)$. Therefore, the overall complexity including the computation of \mathbf{K} is $O(N^3)$.

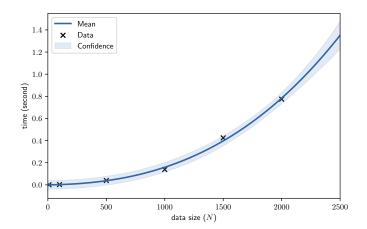
A quick profiling (N=1000, Q=10)

Line	#	Time(ms)	% Time		Line Contents
2				def	<pre>log_likelihood(kern, X, Y, sigma2):</pre>
3		6.0	0.0		N = X.shape[0]
4		55595.0	58.7		<pre>K = kern.K(X)</pre>
5		4369.0	4.6		Ky = K + np.eye(N)*sigma2
6		30012.0	31.7		<pre>L = np.linalg.cholesky(Ky)</pre>
7		4361.0	4.6		<pre>LinvY = dtrtrs(L, Y, lower=1)[0]</pre>
8		49.0	0.1		logL = N*np.log(2*np.pi)/-2.
9		82.0	0.1		<pre>logL += np.square(LinvY).sum()/-2.</pre>
10		208.0	0.2		<pre>logL += -np.log(np.diag(L)).sum()</pre>
11		2.0	0.0		return logL

7 / 59

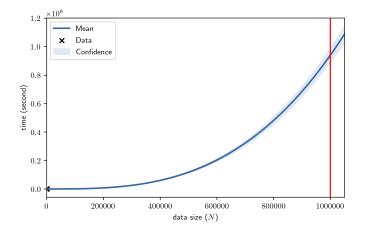
Empirical analysis of computational time

- I collect the run time for $N = \{10, 100, 500, 1000, 1500, 2000\}.$
- They take 1.3ms, 8.5ms, 28ms, 0.12s, 0.29s, 0.76s.



What if we have 1 million data points?

The mean of predicted computational time is 9.4×10^7 seconds ≈ 2.98 years.



Well, it is only a matrix inversion.

- The cubic complexity $O(N^3)$ only comes from $\mathbf{y}^{\top}(\mathbf{K} + \sigma^2 \mathbf{I})^{-1}\mathbf{y}$.
- There must be some *Numerical Linear Algebra* algorithms to speed it up!?

Quadratic Optimization Formulation

• Consider the problem:

$$\mathbf{v} = \hat{\mathbf{K}}^{-1}\mathbf{y}, \quad \hat{\mathbf{K}} = \mathbf{K} + \sigma^2 \mathbf{I}$$

• Rewrite it as a linear system:

$$\hat{\mathbf{K}}\mathbf{v} - \mathbf{y} = 0$$

• This can be formulated as a quadratic optimization:

$$\mathbf{v}^* = \arg\min_{\mathbf{v}} \mathbf{v}^{\top} \hat{\mathbf{K}} \mathbf{v} - \mathbf{v}^{\top} \mathbf{y}$$

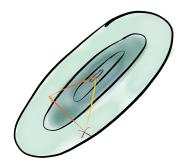
Conjugate Gradient Method (1)

 Conjugate Gradient (CG) method is an efficient solver for the quadratic problem:

$$\mathbf{v}^* = \arg\min_{\mathbf{v}} \mathbf{v}^\top \hat{\mathbf{K}} \mathbf{v} - \mathbf{v}^\top \mathbf{y}$$

• Solve it by finding n linearly independent vectors $\{\mathbf{d}_1, \mathbf{d}_N\}$ such that:

$$\mathbf{v}^* = \mathbf{v}_0 + \alpha_1 \mathbf{d}_1 + \ldots + \alpha_N \mathbf{d}_N$$



Conjugate Gradient (CG)

Figure taken from [Davies, 2015]

Conjugate Gradient Method (2)

- CG is an iterative algorithm.
- ullet CG recovers the exact solution after N iterations.
- We get an approximate solution with #iterations << N.
- ullet Each iteration is $O(N^2)$.

Conjugate Gradient:

$$\mathbf{d}_0 = \mathbf{u}_0 = \mathbf{y} - \hat{\mathbf{K}} \mathbf{v}_0$$

$$\alpha_i = \frac{\mathbf{u}_i^{\top} \mathbf{u}}{\mathbf{d}_i^{\top} \hat{\mathbf{K}} \mathbf{d}_i}$$

$$\mathbf{v}_{i+1} = \mathbf{v}_i + \alpha_i \mathbf{d}_i$$

$$\mathbf{u}_{i+1} = \mathbf{u}_i - \alpha_i \hat{\mathbf{K}} \mathbf{d}_i$$

$$\beta_{i+1} = \frac{\mathbf{u}_{i+1}^{\top} \mathbf{u}_{i+1}}{\mathbf{u}_i^{\top} \mathbf{u}_i}$$

$$\mathbf{d}_{i+1} = \mathbf{u}_{i+1} + \beta_{i+1} \mathbf{d}_i$$

Convergence and Preconditioning

 Numerical stability and rate of convergence of CG are sensitive to the condition number:

$$\kappa(\hat{\mathbf{K}}) = \frac{\lambda_{\max}(\hat{\mathbf{K}})}{\lambda_{\min}(\hat{\mathbf{K}})}$$

Improve the condition number by solving:

$$\mathbf{P}^{-1}\hat{\mathbf{K}}\mathbf{v} - \mathbf{P}^{-1}\mathbf{y} = 0$$

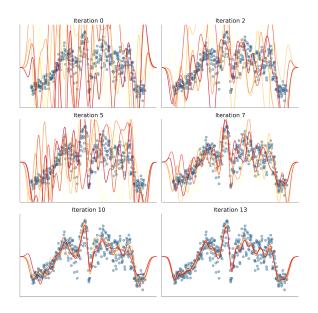
• Ideally $\mathbf{P}^{-1} = \hat{\mathbf{K}}^{-1}$ so that $\kappa(\mathbf{P}^{-1}\hat{\mathbf{K}}) = 1$.



Figure taken from [Davies, 2015]

Example of CG

- Example from [Davies, 2015].
- Estimate the posterior mean of GP.
- 5 separate runs (N=415)
- CG is used in GPyTorch [Gardner et al., 2018].

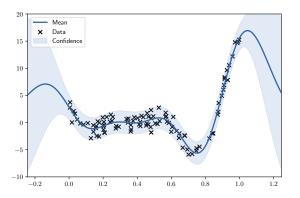


 $O(N^2)$ is still slow!

Gaussian Process Model/Inference Approximation

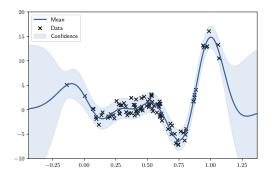
Big data (?)

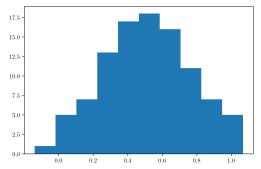
- lots of data \neq complex function
- In real world problems, we often collect a lot of data for modeling relatively simple relations.



Data subsampling?

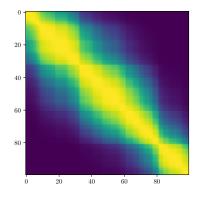
- Real data often do not evenly distributed.
- We tend to get a lot of data on common cases and very few data on rare cases.

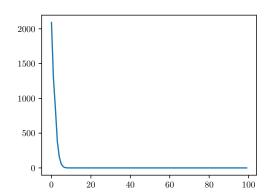




Covariance matrix of redundant data

- With redundant data, the covariance matrix becomes low rank.
- What about low rank approximation?





Low-rank approximation

Let's recall the log-likelihood of GP:

$$\log p(\mathbf{y}|\mathbf{X}) = \log \mathcal{N}\left(\mathbf{y}|0, \mathbf{K} + \sigma^2 \mathbf{I}\right),\,$$

where K is the covariance matrix computed from X according to the kernel function $k(\cdot, \cdot)$ and σ^2 is the variance of the Gaussian noise distribution.

- ullet Assume ${f K}$ to be low rank.
- This leads to Nyström approximation by Williams and Seeger [Williams and Seeger, 2001].

Approximation by subset

- Let's randomly pick a subset from the training data: $\mathbf{Z} \in \mathbb{R}^{M \times Q}$.
- \bullet Approximate the covariance matrix K by $\tilde{K}.$

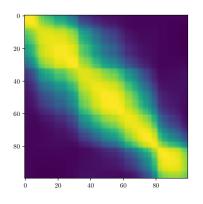
$$\tilde{\mathbf{K}} = \mathbf{K}_z \mathbf{K}_{zz}^{-1} \mathbf{K}_z^{\top} \text{, where } \mathbf{K}_z = \mathbf{K}(\mathbf{X}, \mathbf{Z}) \text{ and } \mathbf{K}_{zz} = \mathbf{K}(\mathbf{Z}, \mathbf{Z}).$$

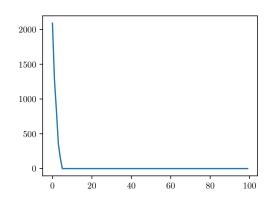
- Note that $\tilde{\mathbf{K}} \in \mathbb{R}^{N \times N}$, $\mathbf{K}_z \in \mathbb{R}^{N \times M}$ and $\mathbf{K}_{zz} \in \mathbb{R}^{M \times M}$.
- The log-likelihood is approximated by

$$\log p(\mathbf{y}|\mathbf{X}, \theta) \approx \log \mathcal{N}\left(\mathbf{y}|0, \mathbf{K}_z \mathbf{K}_{zz}^{-1} \mathbf{K}_z^{\top} + \sigma^2 \mathbf{I}\right).$$

Nyström approximation example

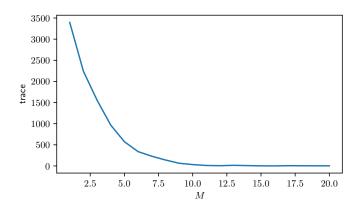
The covariance matrix with Nyström approximation using 5 random data points:





Nyström approximation example

Compute $\operatorname{tr}\left(\mathbf{K}-\tilde{\mathbf{K}}\right)$ with different M.



23 / 59

Efficient computation using Woodbury formula

• The naive formulation does not bring any computational benefits.

$$\tilde{\mathcal{L}} = -\frac{1}{2}\log|2\pi(\tilde{\mathbf{K}} + \sigma^2\mathbf{I})| - \frac{1}{2}\mathbf{y}^{\top}(\tilde{\mathbf{K}} + \sigma^2\mathbf{I})^{-1}\mathbf{y}$$

Apply the Woodbury formula:

$$(\mathbf{K}_z\mathbf{K}_{zz}^{-1}\mathbf{K}_z^\top + \sigma^2\mathbf{I})^{-1} = \sigma^{-2}\mathbf{I} - \sigma^{-4}\mathbf{K}_z(\mathbf{K}_{zz} + \sigma^{-2}\mathbf{K}_z^\top\mathbf{K}_z)^{-1}\mathbf{K}_z^\top$$

- Note that $(\mathbf{K}_{zz} + \sigma^{-2} \mathbf{K}_z^{\top} \mathbf{K}_z) \in \mathbb{R}^{M \times M}$.
- The computational complexity reduces to $O(NM^2)$.

Nyström approximation

- The approximation is directly done on the covariance matrix without the concept of pseudo data.
- The approximation becomes exact if the whole data set is taken, *i.e.*, $\mathbf{K}\mathbf{K}^{-1}\mathbf{K}^{\top}=\mathbf{K}$.
- The subset selection is done randomly.

Gaussian process with Pseudo Data (1)

- Snelson and Ghahramani [2006] proposes the idea of having pseudo data, which is later referred to as Fully independent training conditional (FITC).
- ullet Augment the training data (X, y) with pseudo data u at location Z.

$$p\left(\begin{bmatrix}\mathbf{y}\\\mathbf{u}\end{bmatrix} \mid \begin{bmatrix}\mathbf{X}\\\mathbf{Z}\end{bmatrix}\right) = \mathcal{N}\left(\begin{bmatrix}\mathbf{y}\\\mathbf{u}\end{bmatrix} \mid 0, \begin{bmatrix}\mathbf{K}_{ff} + \sigma^2\mathbf{I} & \mathbf{K}_{fu}\\\mathbf{K}_{fu}^\top & \mathbf{K}_{uu}\end{bmatrix}\right)$$

where $K_{ff} = K(X, X)$, $K_{fu} = K(X, Z)$ and $K_{uu} = K(Z, Z)$.

Gaussian process with Pseudo Data (2)

Thanks to the marginalization property of Gaussian distribution,

$$p(\mathbf{y}|\mathbf{X}) = \int_{\mathbf{u}} p(\mathbf{y}, \mathbf{u}|\mathbf{X}, \mathbf{Z}).$$

• Further re-arrange the notation:

$$p(\mathbf{y}, \mathbf{u} | \mathbf{X}, \mathbf{Z}) = p(\mathbf{y} | \mathbf{u}, \mathbf{X}, \mathbf{Z}) p(\mathbf{u} | \mathbf{Z})$$

where
$$p(\mathbf{u}|\mathbf{Z}) = \mathcal{N}(\mathbf{u}|0, \mathbf{K}_{uu}),$$

 $p(\mathbf{y}|\mathbf{u}, \mathbf{X}, \mathbf{Z}) = \mathcal{N}(\mathbf{y}|\mathbf{K}_{fu}\mathbf{K}_{uu}^{-1}\mathbf{u}, \mathbf{K}_{ff} - \mathbf{K}_{fu}\mathbf{K}_{uu}^{-1}\mathbf{K}_{fu}^{\top} + \sigma^2\mathbf{I}).$

FITC approximation (1)

- So far, p(y|X) has not been changed, but there is no speed-up.
- $\mathbf{K}_{ff} \in \mathbb{R}^{N \times N}$ in $\mathbf{K}_{ff} \mathbf{K}_{fu} \mathbf{K}_{uu}^{-1} \mathbf{K}_{fu}^{\top} + \sigma^2 \mathbf{I}$.
- The FITC approximation assumes

$$\tilde{p}(\mathbf{y}|\mathbf{u}, \mathbf{X}, \mathbf{Z}) = \mathcal{N}\left(\mathbf{y}|\mathbf{K}_{fu}\mathbf{K}_{uu}^{-1}\mathbf{u}, \mathbf{\Lambda} + \sigma^2\mathbf{I}\right),$$

where
$$\mathbf{\Lambda} = (\mathbf{K}_{ff} - \mathbf{K}_{fu} \mathbf{K}_{uu}^{-1} \mathbf{K}_{fu}^{\top}) \circ \mathbf{I}$$
.

FITC approximation (2)

• Marginalize u from the model definition:

$$\tilde{p}(\mathbf{y}|\mathbf{X},\mathbf{Z}) = \mathcal{N}\left(\mathbf{y}|0,\mathbf{K}_{fu}\mathbf{K}_{uu}^{-1}\mathbf{K}_{fu}^{\top} + \mathbf{\Lambda} + \sigma^{2}\mathbf{I}\right)$$

• Woodbury formula can be applied in the sam way as in Nyström approximation:

$$(\mathbf{K}_z \mathbf{K}_{zz}^{-1} \mathbf{K}_z^{\top} + \mathbf{\Lambda} + \sigma^2 \mathbf{I})^{-1} = \mathbf{A} - \mathbf{A} \mathbf{K}_z (\mathbf{K}_{zz} + \mathbf{K}_z^{\top} \mathbf{A} \mathbf{K}_z)^{-1} \mathbf{K}_z^{\top} \mathbf{A},$$

where
$$\mathbf{A} = (\mathbf{\Lambda} + \sigma^2 \mathbf{I})^{-1}$$
.

FITC approximation (3)

- FITC allows the pseudo data not being a subset of training data.
- The inducing inputs **Z** can be optimized via gradient optimization.
- Like Nyström approximation, when taking all the training data as inducing inputs, the FITC approximation is equivalent to the original GP:

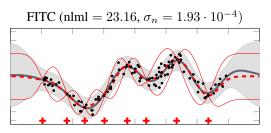
$$\tilde{p}(\mathbf{y}|\mathbf{X}, \mathbf{Z} = \mathbf{X}) = \mathcal{N}(\mathbf{y}|0, \mathbf{K}_{ff} + \sigma^2 \mathbf{I})$$

- FITC can be combined easily with expectation propagation (EP).
- Bui et al. [2017] provides an overview and a nice connection with variational sparse GP.

Model Approximation vs. Approximate Inference

FITC approximation changes the model definition.

- A better objective under FITC does not necessarily corresponds to a better approximation to the original GP.
- In fact, optimizing **Z** can lead to overfitting. [Quiñonero-Candela and Rasmussen, 2005, Bauer et al., 2016]



Optimal values for the exact GP: nlml = 34.15, σ = 0.274. [Bauer et al., 2016]

Model Approximation vs. Approximate Inference

Variational inference (VI) takes a different approach.

- VI keeps the model definition untouched.
- VI derives a lower bound of the log-marginal likelihood:

$$\log(y) \ge \int q(x) \log \frac{p(y, x)}{q(x)} dx = \mathcal{L}$$

Alternatively, it can be written as

$$\mathsf{KL}\left(q(x) \, \| \, p(x|y)\right) = \log p(y) - \mathcal{L}.$$

Variational Sparse Gaussian Process (1)

- Titsias [2009] introduces a variational approach for sparse GP.
- It follows the same concept of pseudo data:

$$p(\mathbf{y}|\mathbf{X}) = \int_{\mathbf{f}, \mathbf{u}} p(\mathbf{y}|\mathbf{f}) p(\mathbf{f}|\mathbf{u}, \mathbf{X}, \mathbf{Z}) p(\mathbf{u}|\mathbf{Z})$$

where
$$p(\mathbf{u}|\mathbf{Z}) = \mathcal{N}(\mathbf{u}|0, \mathbf{K}_{uu}),$$

 $p(\mathbf{y}|\mathbf{u}, \mathbf{X}, \mathbf{Z}) = \mathcal{N}(\mathbf{y}|\mathbf{K}_{fu}\mathbf{K}_{uu}^{-1}\mathbf{u}, \mathbf{K}_{ff} - \mathbf{K}_{fu}\mathbf{K}_{uu}^{-1}\mathbf{K}_{fu}^{\top} + \sigma^2\mathbf{I}).$

Variational Sparse Gaussian Process (2)

- Instead of approximate the model, Titsias [2009] derives a variational lower bound.
- Normally, a variational lower bound of a marginal likelihood looks like

$$\log p(\mathbf{y}|\mathbf{X}) = \log \int_{\mathbf{f}, \mathbf{u}} p(\mathbf{y}|\mathbf{f}) p(\mathbf{f}|\mathbf{u}, \mathbf{X}, \mathbf{Z}) p(\mathbf{u}|\mathbf{Z})$$

$$\geq \int_{\mathbf{f}, \mathbf{u}} q(\mathbf{f}, \mathbf{u}) \log \frac{p(\mathbf{y}|\mathbf{f}) p(\mathbf{f}|\mathbf{u}, \mathbf{X}, \mathbf{Z}) p(\mathbf{u}|\mathbf{Z})}{q(\mathbf{f}, \mathbf{u})}.$$

Special Variational Posterior

Titsias [2009] defines an unusual variational posterior:

$$q(\mathbf{f},\mathbf{u}) = p(\mathbf{f}|\mathbf{u},\mathbf{X},\mathbf{Z})q(\mathbf{u}), \quad \text{where } q(\mathbf{u}) = \mathcal{N}\left(\mathbf{u}|\mu,\Sigma\right).$$

• Plug it into the lower bound:

$$\mathcal{L} = \int_{\mathbf{f}, \mathbf{u}} p(\mathbf{f} | \mathbf{u}, \mathbf{X}, \mathbf{Z}) q(\mathbf{u}) \log \frac{p(\mathbf{y} | \mathbf{f}) p(\mathbf{f} | \mathbf{u}, \mathbf{X}, \mathbf{Z}) p(\mathbf{u} | \mathbf{Z})}{p(\mathbf{f} | \mathbf{u}, \mathbf{X}, \mathbf{Z}) q(\mathbf{u})}$$

$$= \langle \log p(\mathbf{y} | \mathbf{f}) \rangle_{p(\mathbf{f} | \mathbf{u}, \mathbf{X}, \mathbf{Z}) q(\mathbf{u})} - \mathsf{KL} (q(\mathbf{u}) \parallel p(\mathbf{u} | \mathbf{Z}))$$

$$= \langle \log \mathcal{N} (\mathbf{y} | \mathbf{K}_{fu} \mathbf{K}_{uu}^{-1} \mathbf{u}, \sigma^{2} \mathbf{I}) \rangle_{q(\mathbf{u})} - \mathsf{KL} (q(\mathbf{u}) \parallel p(\mathbf{u} | \mathbf{Z}))$$

Special Variational Posterior

• There is no inversion of any big covariance matrices in the first term:

$$-\frac{N}{2}\log 2\pi\sigma^2 - \frac{1}{2\sigma^2} \left\langle (\mathbf{K}_{fu}\mathbf{K}_{uu}^{-1}\mathbf{u} - \mathbf{y})^{\top} (\mathbf{K}_{fu}\mathbf{K}_{uu}^{-1}\mathbf{u} - \mathbf{y}) \right\rangle_{q(\mathbf{u})}$$

• The overall complexity of the lower bound is $O(NM^2)$.

Tighten the Bound

• Find the optimal parameters of $q(\mathbf{u})$:

$$\mu^*, \Sigma^* = \underset{\mu, \Sigma}{\operatorname{arg max}} \mathcal{L}(\mu, \Sigma).$$

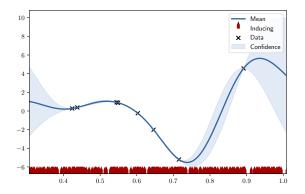
• Make the bound as tight as possible by plugging in μ^* and Σ^* :

$$\mathcal{L} = \log \mathcal{N} \left(\mathbf{y} | 0, \mathbf{K}_{fu} \mathbf{K}_{uu}^{-1} \mathbf{K}_{fu}^{\top} + \sigma^2 \mathbf{I} \right) - \frac{1}{2\sigma^2} \mathsf{tr} \left(\mathbf{K}_{ff} - \mathbf{K}_{fu} \mathbf{K}_{uu}^{-1} \mathbf{K}_{fu}^{\top} \right).$$

- The 1st term is the same as in the Nyström approximation.
- The overall complexity of the lower bound remains $O(NM^2)$.

Variational sparse GP

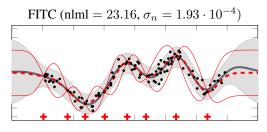
- Note that $\mathcal L$ is not a valid log-pdf, $\int_{\mathbf v} \exp(\mathcal L(\mathbf y)) \le 1$, due to the trace term.
- ullet As inducing points are variational parameters, optimizing the inducing inputs ${f Z}$ always leads to a better bound.
- The model does not "overfit" with too many inducing points.

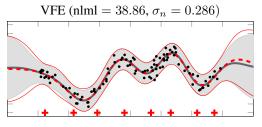


FITC vs. Variational sparse GP

- model approximation vs. approximate inference (see [Bauer et al., 2016])
- Note that, when point estimating hyper-parameters, if the number of inducing points is too small, the model may "under-fit":

$$\mathcal{L} = \log p(y) - \mathsf{KL}\left(q(x) \parallel p(x|y)\right).$$





Optimal values for the exact GP: nlml = 34.15, σ = 0.274. [Bauer et al., 2016]

Limitations of Sparse GP

Variational sparse GP has computational complexity $O(NM^2)$.

The computation becomes infeasible under two scenarios:

- \bullet The number of data points N is very high, e.g., millions of data points.
- The function is very complex, which requires tens of thousands of inducing points.

Mini-batch Learning (1)

- Mini-batch learning allows DNNs to be trained on millions of data points.
- Given a set of inputs and labels, $\mathcal{D} = \{\mathbf{x}_i, y_i\}_{i=1}^N$, $(\mathbf{x}_i, y_i) \sim p(\mathbf{x}, y)$, the true loss function is defined as

$$c_{\mathsf{true}} = \int l(f_{\theta}(\mathbf{x}), y) p(\mathbf{x}, y) \mathsf{d}\mathbf{x} \mathsf{d}y \approx \frac{1}{N} \sum_{i=1}^{N} l(f_{\theta}(\mathbf{x}), y) = c,$$

where $f_{\theta}(\cdot)$ is DNN and $l(\cdot, \cdot)$ is the loss function.

• Gradient descent (GD) updates the parameters by

$$\theta_{t+1} = \theta_t - \eta \frac{\mathrm{d}c}{\mathrm{d}\theta}.$$

Mini-batch Learning (2)

• Mini-batch learning approximates the loss by subsampling the data,

$$c_{\mathsf{MB}} = \frac{1}{B} \sum_{\mathbf{x}_i, y_i \sim \tilde{p}(\mathbf{x}, y)} l(f_{\theta}(\mathbf{x}_i), y_i).$$

Stochastic gradient descent (SGD) updates the parameters by

$$\theta_{t+1} = \theta_t - \eta \frac{\mathsf{d}c_{\mathsf{MB}}}{\mathsf{d}\theta}.$$

• Can mini-batch learning be applied to GPs as well?

Mini-batch Learning for GPs

- Mini-batch learning relies on the objective being an expectation w.r.t. the data, i.e., $\langle l(f_{\theta}(\mathbf{x}), y) \rangle_{p(\mathbf{x}, y)}$.
- The log-marginal likelihood of GP:

$$\log \mathcal{N}\left(\mathbf{y}|0,\mathbf{K}+\sigma^2\mathbf{I}\right)$$

The variational lower bound of sparse GP:

$$\log \mathcal{N}\left(\mathbf{y}|0, \mathbf{K}_{fu}\mathbf{K}_{uu}^{-1}\mathbf{K}_{fu}^{\top} + \sigma^{2}\mathbf{I}\right) - \frac{1}{2\sigma^{2}}\mathsf{tr}\left(\mathbf{K}_{ff} - \mathbf{K}_{fu}\mathbf{K}_{uu}^{-1}\mathbf{K}_{fu}^{\top}\right)$$

"Uncollapsed" Lower Bound

- Hensman et al. [2013] discovers that the "uncollapsed" variational lower bound of sparse GP can be used for mini-batch learning.
- The "uncollapsed" variational lower bound of sparse GP:

$$\mathcal{L} = \langle \log p(\mathbf{y}|\mathbf{f}) \rangle_{p(\mathbf{f}|\mathbf{u}, \mathbf{X}, \mathbf{Z})q(\mathbf{u})} - \mathsf{KL}\left(q(\mathbf{u}) \parallel p(\mathbf{u})\right)$$

• The 2nd term, KL $(q(\mathbf{u}) \parallel p(\mathbf{u}))$, does not depend on the data.

"Uncollapsed" Lower Bound

• In the 1st term, as $p(\mathbf{y}|\mathbf{f}) = \mathcal{N}(\mathbf{y}|\mathbf{f}, \sigma^2\mathbf{I})$,

$$\log p(\mathbf{y}|\mathbf{f}) = \sum_{n=1}^{N} \log \mathcal{N}(y_n|f_n, \sigma^2)$$

• Denote $q(\mathbf{f}|\mathbf{X}, \mathbf{Z}) = \int p(\mathbf{f}|\mathbf{u}, \mathbf{X}, \mathbf{Z})q(\mathbf{u})d\mathbf{u}$.

$$\langle \log p(\mathbf{y}|\mathbf{f}) \rangle_{q(\mathbf{f}|\mathbf{X},\mathbf{Z})} = \left\langle \sum_{n=1}^{N} \log \mathcal{N} \left(y_n | f_n, \sigma^2 \right) \right\rangle_{q(\mathbf{f}|\mathbf{X},\mathbf{Z})}$$
$$= \sum_{n=1}^{N} \left\langle \log \mathcal{N} \left(y_n | f_n, \sigma^2 \right) \right\rangle_{q(f_n|\mathbf{x}_n,\mathbf{Z})}$$

Stochastic Variational GP (SVGP)

The resulting lower bound can be written as the sum over the data,

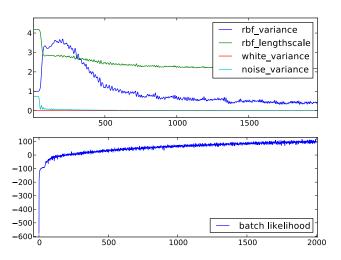
$$\mathcal{L} = \sum_{n=1}^{N} \left\langle \log \mathcal{N} \left(y_{n} | f_{n}, \sigma^{2} \right) \right\rangle_{q(f_{n} | \mathbf{x}_{n}, \mathbf{Z})} - \mathsf{KL} \left(q(\mathbf{u}) \parallel p(\mathbf{u}) \right)$$

$$\approx \frac{N}{B} \sum_{\mathbf{x}_{i}, y_{i} \sim \tilde{p}(\mathbf{x}, y)} \left\langle \log \mathcal{N} \left(y_{i} | f_{i}, \sigma^{2} \right) \right\rangle_{q(f_{i} | \mathbf{x}_{i}, \mathbf{Z})} - \frac{N}{B} \mathsf{KL} \left(q(\mathbf{u}) \parallel p(\mathbf{u}) \right) = \mathcal{L}_{\mathsf{MB}}$$

This allows us to do mini-batch learning with SGD,

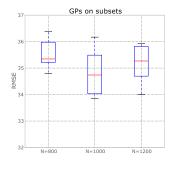
$$\theta_{t+1} = \theta_t - \eta \frac{\mathsf{d}\mathcal{L}_{\mathsf{MB}}}{\mathsf{d}\theta}.$$

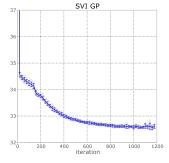
2D Synthetic Data

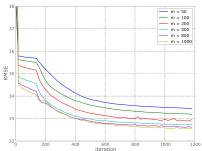


Airline Delay Data

Flight delays for every commercial flight in the USA from January to April 2008. 700,000 train, 100,000 test







The pros and cons of SVGP

Pros

 \bullet With mini-batch learning, the computational complexity reduces from $O(NM^2)$ to $O(M^3).$

Cons

- ullet The variational distribution $q(\mathbf{u})$ needs to be explicitly optimized.
- The number of variational parameters increase from MQ to $(2M+M^2)Q$.
- Optimization relies on SGD methods and the methods like L-BFGS are no longer applicable.
- It can be challenging to initialize $q(\mathbf{u})$.

GP sampling?

- So far, we only consider parameter estimation and posterior inference.
- What about drawing a sample from GP posterior?
- ullet Draw a sample for a set of new location X_* :

$$\mathbf{f}_i \sim \mathcal{N}\left(\mathbf{f}_*|\mathbf{K}_*(\mathbf{K} + \sigma^2\mathbf{I})^{-1}\mathbf{y}, \mathbf{K}_{**} - \mathbf{K}_*(\mathbf{K} + \sigma^2\mathbf{I})^{-1}\mathbf{K}_*^{\top}\right)$$

Draw a finite sample

- A sample can be computed via the reparameterization trick.
- Compute the Cholesky factor:

$$\mathbf{L}_* = \mathtt{chol}(\mathbf{K}_{**} - \mathbf{K}_*(\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \mathbf{K}_*^{ op})$$

- Draw sample for an isotropic Gaussian $\epsilon_i \sim \mathcal{N}(0, \mathbf{I})$.
- The posterior sample can be generated by transforming ϵ_i :

$$\mathbf{f}_i = \mathbf{K}_* (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \mathbf{y} + \mathbf{L}_* \epsilon_i$$

What about a function sample?

- GP is a distribution over functions: $\mathcal{GP}(0, k(\cdot, \cdot))$.
- Can we draw a parametric function sample from a GP posterior?

$$f_i \sim \mathcal{GP}(f|0, k(\cdot, \cdot), \mathcal{D})$$

GP function sample

- GP function sample can be handy for downstream tasks.
- For example, Bayesian optimization with Thompson sampling.

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} f_i(\mathbf{x}), \quad f_i \sim \mathcal{GP}(f|0, k(\cdot, \cdot), \mathcal{D})$$

• The minimum of a function sample => a sample from the distribution of minima

Weight-space approximation to GP

- If the kernel function is degenerate, $k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^{\top} \phi(\mathbf{x})$.
- GP is written as a Bayesian Linear Model:

$$p(\mathbf{y}|\mathbf{w}, \mathbf{X}) = \mathcal{N}(\mathbf{y}|\mathbf{\Phi}\mathbf{w}, \sigma^2\mathbf{I}), \quad p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|0, \mathbf{I}), \quad \mathbf{\Phi} = (\phi(\mathbf{x}_1), \dots, \phi(\mathbf{x}_N))$$

• Get back GP formulation by marginalizing w:

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y}|\mathbf{\Phi}0, \mathbf{\Phi}\mathbf{I}\mathbf{\Phi}^{\top} + \sigma^{2}\mathbf{I}) = \mathcal{N}(\mathbf{y}|0, \mathbf{K} + \sigma^{2}\mathbf{I})$$

Sample from Weight-space approximation

- The posterior of GP is encoded into $p(\mathbf{w}|\mathbf{y}, \mathbf{X})$ (a Gaussian distribution).
- First, we draw a sample of \mathbf{w} : $\mathbf{w}_i \sim p(\mathbf{w}|\mathbf{y}, \mathbf{X})$.
- Considering the noise-free observation $f = \mathbf{w}\phi(\mathbf{x})$, we get a function sample:

$$f_i(\mathbf{x}) = \mathbf{w}_i \phi(\mathbf{x})$$

How to approximate a kernel function? (1)

- For the above to work, we need the approximation $k(\mathbf{x}, \mathbf{x}') \approx \phi(\mathbf{x})^{\top} \phi(\mathbf{x})$.
- For stationary kernels, remember Bochner Theorem? (Markus' slides)
 - ullet Let's apply Fouriers to the kernel K(au):=K(x,x'), where au=x-x' (instead of f(x))

Theorem (Bochner)

Any stationary kernel $K: \mathbb{R}^D \mapsto \mathbb{R}$ and its spectral density $S: \mathbb{R}^D \mapsto \mathbb{R}$ are Fourier duals

$$K(\tau) = \int_{-\infty}^{\infty} S(\omega) e^{2\pi i \omega^T \tau} d\omega$$

(Inverse Fourier Transform)

 $S(\omega) = \int_{-\infty}^{\infty} K(\tau) e^{-2\pi i \omega^T \tau} d\tau.$

(Fourier Transform)

How to approximate a kernel function? (2)

•
$$k(\mathbf{x}, \mathbf{x}') = \mathbb{E}_{\omega}[z_{\omega}(\mathbf{x})z_{\omega}(\mathbf{x}')], z_{\omega}(\mathbf{x}) = \sqrt{2}\cos(\omega^{\top}\mathbf{x} + b)$$

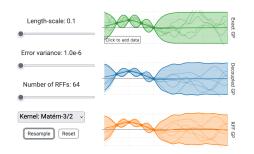
- Draw a sample $\omega_i \sim p(\omega)$.
- Draw a sample $b_i \sim \mathcal{U}[0, 2\pi]$.
- $\phi_i(\mathbf{x}) = \sqrt{2}\cos(\omega_i^{\mathsf{T}}\mathbf{x} + b_i)$

Gaussian $e^{-\frac{\ \Delta\ _2^2}{2}}$ $(2\pi)^{-\frac{D}{2}} e^{-\frac{\ \Delta\ _2^2}{2}}$ Laplacian $e^{-\ \Delta\ _1}$ $\prod_d \frac{1}{\pi(1+\omega_d^2)}$	Kernel Name	$p(\Delta)$ $p(\omega)$	
Cauchy $\prod_{d} \frac{1}{1+\Delta^2} e^{-\frac{1}{1+\Delta^2}}$			

[Rahimi and Recht, 2008]

Example of GP sample

- Matérn-3/2 kernel
- A more efficient method [Wilson et al., 2020]



https://sml-group.cc/blog/2020-gp-sampling/

Q & A!

59 / 59

- Matthias Bauer, Mark van der Wilk, and Carl Edward Rasmussen. Understanding probabilistic sparse gaussian process approximations. In *Advances in Neural Information Processing Systems 29*, pages 1533–1541. 2016.
- Thang D Bui, Josiah Yan, and Richard E Turner. A unifying framework for gaussian process pseudo-point approximations using power expectation propagation. *Journal of Machine Learning Research*, 18:3649–3720, 2017.
- Alexander Davies. *Effective implementation of Gaussian process regression for machine learning*. PhD thesis, Department of Engineering, University of Cambridge, 2015.
- Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G Wilson. Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu acceleration. In *Advances in Neural Information Processing Systems*, 2018.
- James Hensman, Nicolò Fusi, and Neil D. Lawrence. Gaussian processes for big data. page 282–290, 2013.
- Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view of sparse approximate gaussian process regression. *Journal of Machine Learning Research*, 6:1939—-1959, 2005.
- Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In *Advances in Neural Information Processing Systems*, 2008.
- Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs. In *Advances in Neural Information Processing Systems*, pages 1257–1264. 2006.
- Michalis Titsias. Variational learning of inducing variables in sparse gaussian processes. In *Proceedings* of the Twelth International Conference on Artificial Intelligence and Statistics, pages 567–574, 2009.

59 / 59

- Christopher K. I. Williams and Matthias Seeger. Using the nyström method to speed up kernel machines. In *Advances in Neural Information Processing Systems*, pages 682–688. 2001.
- James T. Wilson, Viacheslav Borovitskiy, Alexander Terenin, Peter Mostowsky, and Marc Peter Deisenroth. Efficiently sampling functions from gaussian process posteriors. In *International Conference on Machine Learning*, 2020.