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Problem definition

f : X → R is a ‘well behaved’ function defined in a bounded domain

X ⊆ RD . Find

xM = arg min
x∈X

f (x).

� f is explicitly unknown and multimodal.

� Evaluations of f may be perturbed by noise.

� Evaluations of f are expensive (time or cost).

� No gradient information.
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Expensive functions, who doesn’t have one?

Model configuration in machine learning: find optimal

hyper-parameter values, learning rates, number of layers, etc.

Adaptive experimentation: Optimize a function embodied in a

physical/biological process.
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Expensive functions, who doesn’t have one?

Many other problems:

� Robotics.

� Control, reinforcement learning.

� A/B testing.

� Scheduling, planning.

� Compilers, hardware, software.

� Industrial design.

� Intractable likelihoods.

� Simulation-optimization.
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What to do to optimize a black-box function?

Option 1: Use previous knowledge

Select the parameters at hand. Perhaps not very scientific but still in

use...
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What to do to optimize a black-box function?

Option 2: Grid search?

f is L-Lipschitz continuous, |f (x)− f (x ′)| ≤ L∥x − x ′∥, and we are in a

noise-free domain. To guarantee that we propose some xM,n such that

f (xM)− f (xM,n) ≤ ϵ

we need to evaluate f on a D-dimensional unit hypercube:

(L/ϵ)Devaluations!

Example: (10/0.01)5 = 10e14...

... but function evaluations are very expensive!
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What to do to optimize a black-box function?

Option 3: Random search?

We can sample the space uniformly

Better than grid search in various senses but still expensive to guarantee

good coverage.

[(Image source) Bergstra and Bengio, 2012]

6



What to do to optimize a black-box function?

Key question:

Can we do better?
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Problem (the audience is encouraged to participate!)

� Find the minimum of some function f in the interval [0,1].

� f is (L-Lipschitz) continuous and differentiable.

� Evaluations of f are exact and we have 4 of them!
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Situation

Where is the minimum of f?

Where should we take the next evaluation?
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Intuitive solution
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Intuitive solution
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Surrogate modelling for optimization

1. Use a surrogate model of f .

2. Define some utility/loss function to collect new data points

satisfying some optimality criterion: optimization as decision.

3. Study each decision problems (of collecting a new point) as

inference using the surrogate model. Calibrate both, epistemic and

aleatoric uncertainty.
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The surrogate model



Gaussian process emulators f (x) ∼ GP(µ(x), kθ(x , x
′))

Infinite-dimensional probability density, such that each linear

finite-dimensional restriction is multivariate Gaussian.

� Model is fully determined by µ(x) and kθ(x , x
′).

� Posterior can be computed in closed form.

� Uncertainty calibration.

[Rasmunsen and Williams, 2006]

17



Semi-mechanistic Gaussian processes

� Model complex functions (Deep GPs are also an option).

� Kernel design: we can incorporate prior knowledge into kθ(x , x
′).
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Other models are also valid

� T-Student processes.

� Random Forests.

� Bayesian neural networks.

� Trees of Parzen estimators.

� etc.

Any model able to calibrate uncertainty (needed for exploration) can be

used in Bayesian optimization.
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Exploration vs. exploitation

The exploration-exploitation dilemma is present in most of our

day-by-day decisions.

Bayesian reasoning
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The acquisition function



GP Upper (lower) Confidence Band

αLCB(x; θ,D) = −µ(x; θ,D) + βtσ(x; θ,D)

� Upper (lower) bounds f , theoretical results are available.

� Optimal choices available for the ‘regularization parameter’.

� Direct balance between exploration and exploitation.

[Srinivas et al., 2010] 21



Expected improvement

αEI (x; θ,D) =

∫
y

max(0, ybest − y)p(y |x; θ,D)dy

� Perhaps the most used acquisition.

� Explicit form available for Gaussian posteriors.

� It is too greedy in some problems.

[Jones et al., 1998] 22



Entropy search and Predictive Entropy search

αES(x; θ,D) = H[p(xmin|D)]− Ep(y |D,x)[H[p(xmin|D ∪ {x, y})]]

� Information theoretic approaches: reduce the entropy of p(xmin).

� Same acquisition, two different approximations (ES, PES).

� Approximating p(xmin) is not trivial.

[Hennig et al., 2013; Lobato et al., 2014]
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Thompson sampling

αTHOMP.(x; θ,D) = g(x), where g(x) is sampled form GP(µ(x), k(x , x ′)).

� Stochastic acquisition function.

� Used in PES to compute p(xmin).

� Uses Fourier features for continuous samples.

[Rahimi and B. Recht, 2007]
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Other acquisitions

Each acquisition balances exploration-exploitation in a different way. No

universal best method.

Others:

� Probability of improvement.

� Knowledge gradient.

� Approximations of Max-value entropy search (MES, GIBBON).

� etc.

[Hushner, 1964; Wu et al., 2017; Wang and Jegelka, 2017; Moss et al., 2021]
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The algorithm



Bayesian Optimisation

Choose a prior measure over f and collect some initial data.

While the budget is not over:

1. Combine the prior and the available data to get a posterior.

2. Use the posterior to build a acquisition/loss function.

3. Optimize the acquistion and augment the dataset.

Report best found location.

[Mockus, 1978]
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Bayesian optimization in action
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Bayesian optimization in action
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Bayesian Optimization

Strategy to transform the problem

xM = arg min
x∈X

f (x)

unsolvable!

into a series of problems:

xn+1 = argmax
x∈X

α(x ;Dn,Mn)

solvable!

where now:

� α(x) is inexpensive to evaluate.

� The gradients of α(x) are typically available.

� Issure: still need to find xn+1 in each iteration.
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Practical considerations

� Handle the hyper-parameters of the surrogate model.

� Picking the right covariance/model.

� Initial designs, how to start?

� Optimizing the acquisition function.

Review paper by Shahriari, et al. (2016): Taking the Human Out of the Loop: A Review of

Bayesian Optimization. Proceedings of the IEEE 104(1):148–175.
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Optimizing over non-Euclidean

spaces



Optimizing over string spaces

� Standard BO methods are defined on Euclidean spaces.

� Optimizing over strings or other structured spaces is not trivial.

� In many relevant problems (drug design, gene optimization, etc.)

the input space is defined over strings.
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GPs with a string kernel

BOSS: Bayesian Optimization for String Spaces.

1. Use a GP with a string kernel:

kn(a,b) =
∑
u∈Σn

cu(a)cu(b)

� cu(s) = λ
|u|
m

∑
1<i1<..<i|u|<|s| λ

i|u|−i1
g Iu((si1 , .., si|u|)).

� Σn set of all possible ordered collections alphabet Σ.

� Ix(y) indicator function checking if the strings x and y match.

� Match decay λm ∈ [0, 1] and gap decay λg ∈ [0, 1].

2. Optimize the acquisition function with a genetic algorithm:

� Unconstrained spaces and locally constrain spaces.

� Grammar constrain spaces.

� Candidate set.

[Moss et al, 2020]
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Results

� State-of-the-art approach compared to other alternatives (VAEs,

feature based representations, etc.).

� Only two parameters to tune in the model.
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Optimizing the output of a causal graph

[González, 2015; Maksimov, 2015; Murray et al, 2003; Courtney et al, 2017; Bottou et al, 2013]
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Global optimization vs. Causal optimization

Global optimization Causal optimization

Idea: Use the topology of the graph to find the minimal subsets of

variables that need to be tuned to optimize the output Y.

[Aglietti et al, 2020]
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Causal Bayesian optimization

Explore vs. exploit; observe vs. intervene.

42



Batch Bayesian optimization



Batch Bayesian optimization

Standard Bayesian optimization

Batch Bayesian optimization
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Batch Bayesian optimization

� Available pairs {(xi , yi )}ni=1 are augmented with the evaluations of f

on Bnb
t = {xt,1, . . . , xt,nb}.

� Goal: design Bnb
1 , . . . ,Bnb

m .

Examples: multiple cores to optimize a computer code, well plates in lab

experimentation, etc.
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Approaches

� Non-greedy, joint optimization of the batch Bnb
t :

αqEI (X; θ,D) =

∫
y

max(0, ybest − Y )p(Y |X; θ,D)dY

Each batch requires solving a D × nb optimization (bad scalability).

� Greedy, sequential optimization of the batch Bnb
t :

1. Optimize αEI (x; θ,D).

2. Fantasize a value of y in that location.

3. Find next point for the update the model.

Number of samples scales exponentially with the size of the batch.

[Azimi et al., 2010; Desautels et al., 2012; Chevalier et al., 2013; Contal et al. 2013, etc.]
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Local penalization strategy

The maximization-penalization strategy selects xt,k as

xt,k = argmax
x∈X

g(α(x ; It,0))
k−1∏
j=1

φ(x ; xt,j)

 ,

g is a transformation of α(x ; It,0) to make it always positive.

Batch of size 5 for two different values of the Lipschitz constant L

[Gonzalez et al. 2016]
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2D experiment with ‘large domain’

Comparison in terms of the wall-clock time.
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Non-myopic Bayesian

optimization



Non-myopic Bayesian optimization

Standard Bayesian optimization

Batch Bayesian optimization
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Non-myopic Bayesian optimization

Standard Bayesian optimization

Batch Bayesian optimization

Bayesian optimization with look-ahead (non-myopic)
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Illustration

Reasoning myopically is sub-optimal when we know the remaining budget.
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Core problem

� One-step marginal utility α(x |D):

v1(x |D) = α(x |D)

� Multiple steps utility be decomposed with the Bellman recursion:

vt(x |D) = v1(x |D) + Ey [max
x′

vt−1(x
′|D ∪ {(x , y)})]

Optimizing the non-myopic policy is intractable.
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Approximations to the optimal policy

� Two-steps look-ahead:

v2(x |D) = v1(x |D) + Ey [max
x′

v1(x
′|D1)]

� GLASSES (Global optimisation with Look-Ahead through Stochastic

Simulation and Expected-loss Search):

vt(x |D) = v1(x |D) + Ey [V
t−1
1 (X ′|D1)]

� BINOCULARS (Batch-Informed Non-myopic Choices, Using

Long-horizons for Adaptive, Rapid SED):

vt(x |D) = v1(x |D) + max
X

Ey [V
t−1
1 (X ′|D1)]

where Vt is a batch value function and X ′ a pre-computed batch.

[Gonzalez et al. 2016; Jiang et al. 2019]
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Applications



Learning voices with a few utterances

Fine-tune a pre-trained test-to-speech model to mimic a new speaker

using a small corpus of target utterances.

Full voice reconstruction with are few sentences.

[Moss et al. 2019]
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Drone design and control

Drone controller
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https://www.youtube.com/watch?v=GiqNQdzc5TI


Privacy accuracy trade-off

Optimizing the hyper-parameters of machine learning models to balance

the privacy-accuracy trade off (learn the optimal Pareto front).

Select the best accuracy given a level of differential privacy (ϵ).

[Avent et al. 2019]
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Synthetic gene design

� Use mammalian cells to make protein products.

� Control the ability of the cell-factory to use synthetic DNA.

Optimize genes (ATTGGTUGA...) to best enable the cell-factory to

operate most efficiently.

[Gonzalez et al, 2015]
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Summary

� Simple algorithm, multiple applications.

� Two basic elements: model and acquisition.

� Proper exploration-exploitation is the key to solve real problems.

� Use domain knowledge the is key to address real problems.

� Wide range of code bases available with multiple implementations.
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Questions?
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