Spatial and spatio-temporal
log-Gaussian Cox processes:
re-defining geostatistics

Peter J Diggle

Lancaster University and University of Liverpool

N\ Bess

computation

Py U\ IveRsITY oF ‘ INSTITUTE OF INFECTION
&7 LIVERPOOL | AND GLOBAL HEALTH



Geostatistics

o traditionally, a self-contained methodology
for spatial
prediction, developed at Ecole des Mines,
Fontainebleau, France

e nowadays, that part of spatial statistics
which is
concerned with data obtained by spatially
discrete
sampling of a spatially continuous process




Model-based Geostatistics
(Diggle, Moyeed and Tawn, 1998)

o the application of general principles of statistical
modelling and inference to geostatistical problems

@ which means:
— formulate a model for the data
— use likelihood-based methods of inference

— answer the scientific question



Geostatistical data and model : lead pollution in Galicia
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Point processes

o Stochastic models for arrangements of points in space and/or
time

@ Scientific focus on understanding why the points are where
they are:
— absolutely

— and/or relatively



Point process data: two examples
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Cox process

Poisson process

@ A(x) : intensity function

e event-locations mutually independent, probability density
proportional to A(x)

Requires: A(x) > 0 and [, A(x)dx < oo, for any finite region A

Cox process

@ A(x) is unobserved realisation of stochastic process A(x)



Trans-Gaussian Cox process

Cox process with:

° A(x) = F{S(x)}

@ S(x) ~ Gaussian process

Log-Gaussian Cox process: F(-) = log(-)

e introduced by Mgller, Syversveen and Waagepetersen (1998)
e popular because of analytic tractiability (moments, etc)

@ but any F(-) OK if using Monte-Carlo methods of inference
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LGCP as a geostatistical model
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LGCP as a geostatistical model
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LGCP as a geostatistical model




LGCP as a geostatistical model




Re-defining geostatistics

Old: New:

@ unobserved, real-valued e unobserved, real-valued
stochastic process stochastic process
S={S(x):x € A} S ={S(x):x € A}

o pre-specified locations o data D
{x;€eA:i=1,...,n}
measurements e use model for [S, D] = [S][D|S]

to predict S
Y={Yi:i=1,..n}at predt
locations x;

e use model for [S, Y] = [S][Y|S]
to predict S

New definition shifts focus from data to problems



LGCP model-fitting

Ingredients:

o latent Gaussian process S
e data D

@ parameters 0

Predictive inference via MCMC or INLA

[6,S,D] = [6][S|6][DIS, 6] = [S|D] = /ISID:9][0|D]d0

/[S|D; 6][0|D]dé ~ [S|D; 8] ?



Applications

@ intensity estimation: hickories in Lansing Woods

o spatial segregation: BTB in Cornwall

o disease atlases: lung cancer mortality in Spain

o real-time spatial health surveillance: AEGISS



Intensity estimation: hickories in Lansing Woods

@ use data to construct non-parametric
estimate of A\(x)

@ lots of existing methods, but
inferential standing unclear

o LGCP approach enables predictive
inference

Ax) = exp{S(x)}

S() ~ SGP(,B,Uz,p(u))
p(u) = exp(—u/9)




Intensity estimation: Lansing Woods results
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Spatial segregation: BTB in Cornwall
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o Ni(x) = exp{Bk + So(x) + Sk(x)} : k=1,...,m

@ So(x) not identifiable:

Pe(x) = {A()}/{3Z12 Mi(x)} = expl— 24 {8 + Si(x)}]



BTB in Cornwall: estimated type-specific probability
surfaces
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BTB in Cornwall: areas of type-specific (0.84+) dominance

P(type k dominates)> 0.6 P(type k dominates)> 0.7

Dominant type defined as p_k>0.8

P(type k dominates)> 0.8 P(type k dominates)> 0.9




Disease atlases: lung cancer mortality in Spain

Spatially discrete approach: population denominators and
risk-factor information aggregated to area-level averages
(MRF model)
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Disease atlases: lung cancer mortality in Spain

Spatially continuous approach: population denominators and
risk-factor information in principle at point level (LGCP model)

A(x) = d(x) exp{z(x)'8 + S(x)}
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Building spatio-temporal dependence

@ Separable

p(u,v) = ps(u; @)pr(vi B)

@ Non-separable empirical

p(u,v) = ps(u; o; B)pr(vV){1 + f(u,v; 0)}

@ Non-separable mechanistic

S(x,t) = z!iﬂ]o {/ hs(u)S(x — u,t — 9)du + Zs(x, t)}



In conclusion

@ Statistical modelling should be driven by the underlying
scientific problem, rather than by the format of available data

@ Most (but not all) natural phenomena are spatially continuous

© Surprisingly many of the problems to which spatial methods
can make a useful contribution reduce to an application of
Bayes’ Theorem

[S, D] = [S][D|S] = [S|D]

@ Modelling an unobserved stochastic process and assigning a
prior distribution to an unknown parameter are mathematically
equivalent but scientifically different activities

@ Modelling as a route to empirical prediction and modelling as
a route to understanding a physical/biological mechanism
demand different approaches
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