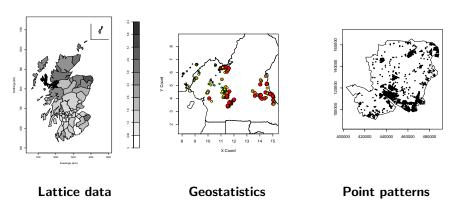
Statistical Modelling Approaches to Disease Mapping

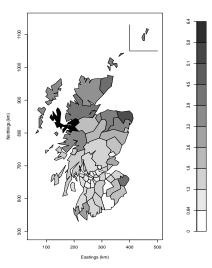
Peter J Diggle

Lancaster University and University of Liverpool

Spatial statistics according to Cressie (1991)



Lattice data: Scottish lip cancer incidence



Data: county-level incidences $Y_i : i = 1,, n$

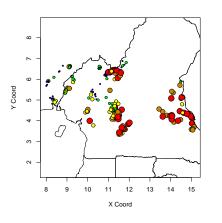
Model: Markov random field:

$$[Y_i | \{Y_j : j \neq i\}] : i = 1, ..., n$$

- risks in near-neighbouring counties are positively correlated
- incidences Y_i are noisy versions of risk × population

Scientific interest confined to specified set of counties?

Geostatistics: Loa loa prevalence in Cameroon



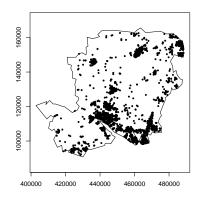
Data: empirical prevalences Y_i at sample locations x_i : i = 1,, n

Model: spatially continuous stochastic process, $S(x) : x \in \mathbb{R}^2$

- correlation between S(u) and S(v) specified as a function of distance between u and v
- $Y_i|S(x_i) \sim Binomial$

Scientific interest extends to S(x) at non-sampled locations

Point pattern: gastro-enteric illness in Hampshire



Data: outcomes (x_i, t_i) are locations and dates of calls to NHS Direct recorded as "vomiting and/or diarrhoea"

Model: (x_i, t_i) : i = 1, 2, ... a stochastic point process

- intensity $\lambda(x,t)$
- successive cases independent?

Scientific interest is in locations themselves

Disease mapping

Context

- region of interest A
- disease risk $\rho(x) : x \in A$
- data relating to variation in disease prevalence over A

Objective

- estimate $\rho(x)$?
- calculate $P{\rho(x) > c|data}$?

The answer to any prediction problem is a probability distribution

Peter McCullagh, FRS

Markov Random Field (MRF) models (Besag, 1974; Rue and Held, 2005)

- Random variables $S = (S_1, ..., S_n)$
- Joint distribution [S] fully specified by full conditionals,

$$[S_i|\{S_j: j \neq i\}]: i = 1,...,n$$

• Neighbourhood of i is $\mathcal{N}(i) \subset \{1, 2, ..., n\}$

$$[S_i | \{S_j : j \neq i\}] = [S_i | S_j : j \in \mathcal{N}(i)] : i = 1, ..., n$$

Hierarchical Poisson/Gaussian MRF

• latent Gaussian MRF $S = (S_1, ..., S_n)$,

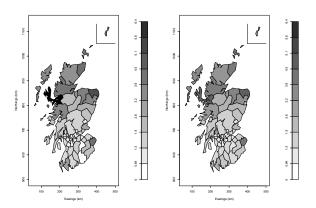
$$S_i|\{S_j:j\neq i\}\sim \mathbf{N}(\bar{S}_i,\tau^2/m_i)$$

- conditionally independent $Y_i|S \sim Poiss(z_i'\beta + \gamma S_i)$
- risk map: E[S_i|Y]

Besag, York and Mollié, 1991

Cancer atlases

Raw and spatially smoothed relative risk estimates for lip cancer in 56 Scottish counties



Limitations of MRF models for spatial data

MRF's are just multivariate probability distributions

- parameterised in a way that has a spatial interpretation
- but specific to a fixed set of locations $x_1, ..., x_n$

Neighbourhood specification can be problematic

- natural hierarchy of models on regular lattices
- not so for irregular lattices
- and arguably un-natural for spatially aggregated data,

$$Y_i = \int_{A_i} Y(x) dx$$

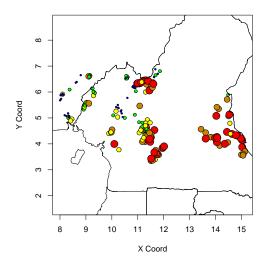
Geostatistical models (Diggle and Ribeiro, 2007; Chilès and Delfiner, 2012)

- Stochastic process $S(x) : x \in A \subset \mathbb{R}^2$
- Data $\{(Y_i, x_i) : i = 1, ..., n\}$
- Stationary Gaussian model

$$\mathrm{E}[\mathsf{S}(\mathsf{x})=0] \quad \mathrm{Cov}\{\mathsf{S}(\mathsf{x}),\mathsf{S}(\mathsf{x}-\mathsf{u})\} = \sigma^2 \rho(\mathsf{u})$$

$$[Y|S] = [Y_1|S(x_1)]...[Y_n|S(x_n)]$$

A geostatistical data-set: Loa loa prevalence surveys



Loa loa: generalised linear model

Latent spatially correlated process

$$egin{aligned} \mathbf{S}(\mathbf{x}) &\sim \mathrm{SGP}\{\mathbf{0}, \sigma^2,
ho(\mathbf{u}))\} \
ho(\mathbf{u}) &= \exp(-|\mathbf{u}|/\phi) \end{aligned}$$

Linear predictor (regression model)

$$d(x) = \text{environmental variables at location } x$$

 $\eta(x) = d(x)'\beta + S(x)$
 $p(x) = \log[\eta(x)/\{1 - \eta(x)\}]$

Conditional distribution for positive proportion Y_i/n_i

$$Y_i|S(\cdot) \sim Bin\{n_i, p(x_i)\}$$
 (binomial sampling)

Probabilistic exceedance map for Cameroon (Diggle et al, 2007)

0.05 - 0.10 - 0.05No Data

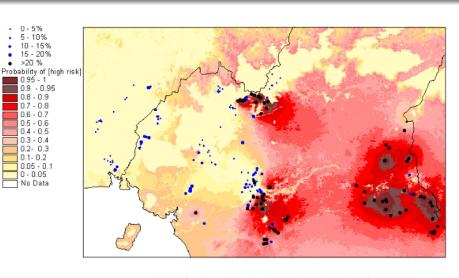


Figure 6: PCM for [high risk] in Cameroon based on ERMr with ground truth data.

Point process models: log-Gaussian Cox process (Møller, Syversveeen and Waagepetersen, 1998)

- Stochastic process $S(x) : x \in A \subset \mathbb{R}^2$
- Data $\mathcal{X} = \{x_i : i = 1, ..., n\}$
- Stationary Gaussian model

$$E[S(x) = 0] \quad Cov\{S(x), S(x - u)\} = \sigma^2 \rho(u)$$

$$[X|S] = Poisson process, intensity $\Lambda(x) = exp\{S(x)\}$$$

Real-time surveillance: spatio-temporal point process (Diggle, Rowlingson and Su, 2005)

Ascertainment and Enhancement of Gastroenteric Infection Surveillance Statistics

- largely sporadic incidence pattern
- concentration in population centres
- occasional "clusters" of cases

Can spatial statistical modelling enable earlier detection of "clusters"?

AEGISS: log-Gaussian Cox process model

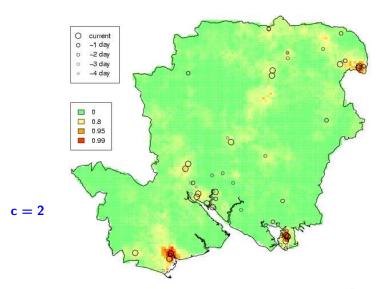
intensity = expected
$$\times$$
 unexpected $\Lambda(x,t) = \lambda_0(x) \times \mu_0(t) \times R(x,t)$

Objective: use incident data up to time t to construct predictive distribution for current "anomaly" surface, R(x,t)

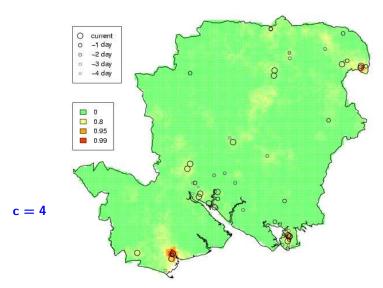
Model

- ullet spatio-temporal point process ${\cal P}$
- $log R(x, t) \sim latent Gaussian process$
- $\mathcal{P}|R \sim \text{Poisson process}$

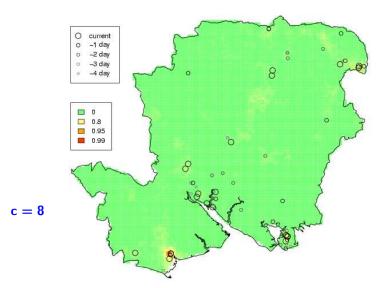
Spatial prediction: 6 March 2003



Spatial prediction: 6 March 2003



Spatial prediction: 6 March 2003



Synthesis Diggle, Moraga, Rowlingson, and Taylor, 2013)

```
S = \text{state of nature}

Y = \text{all relevant data}

T = \mathcal{F}(S) = \text{target for prediction}
```

Pau da Lima, Salvador, Brazil

Pau da Lima, Salvador, Brazil

Leptospirosis cohort study: Pau da Lima

- subjects i at locations x_i , blood-samples taken at times $t_{ij} \approx 0, 6, 12, 18, 24$ months
- sero-conversion defined as change from zero to positive, or at least four-fold increase in concentration
- data consist of:
 - $Y_{ij} = 0/1$: j = 1, 2, 3, 4 (seroconversion no/yes)
 - r_i(t) known and hypothesised risk-factors

Leptospirosis cohort study: analysing the data

Longitudinal data, binary outcome ⇒ **standard problem?**

id	Follow-up				Age
	1	2	3	4	
1	0	0	1	0	57
2	0	0	0	0	34
3	0	0	1	X	38
4	1	1	1	0	28
				•	•
	•	•	•	•	•
	•	•	•	•	•
950	0	1	0	1	40

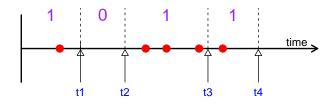
Logistic regression for binary response,

$$\log\{p_{it}/(1-p_{it})\} = \alpha + \beta \times age$$

Need to account for correlation amongst repeated outcomes on same individual

- generalized estimating equations
- generalized linear mixed models
- ...

Leptospirosis cohort study: analysing the problem



- infection events on each individual form a point process with time-varying intensity, $\Lambda_i(t)$
- follow-up times partially censor the point process record
- reduction to binary data represents additional censoring

Leptospirosis cohort study: model formulation

Data:
$$Y_{it} = 0/1$$
 $t = 1, 2, 3, 4$ $i = 1, 2, ..., n$

- $Y_{it} = 1 \Leftrightarrow at least one infection event$
- model infection events as person-specific, inhomogeneous Cox processes,

$$\Lambda_i(t) = \exp\{r_i(t)'\beta + U_i + S(x_i)\}$$

$$\mathrm{P}(Y_{it} = 1 | \Lambda_i(\cdot) \} = 1 - \exp\left\{ - \int_{t_{i,j-1}}^{t_{ij}} \Lambda_i(u) du \right\}$$

Inference: likelihood rules OK?

• The likelihood principle

Two data-sets x and y that generate identical likelihood functions are equivalent as evidence

The law of likelihood

If $H_A \Rightarrow p_A(x)$ and $H_B \Rightarrow p_B(x)$, then data x constitutes evidence in favour of A over B iff $p_A(x) > p_B(x)$, and the likelihood ratio, $p_A(x)/p_B(x)$ measures the strength of the evidence

Inference: what's the question? (Royall, 1997)

Bayesian

What should I believe?

Decision-theoretic

What should I do?

• Classical:

What do the data tell me?

Acknowledgements

CHICAS, Lancaster University: Paula Moraga, Barry Rowlingson, Ben Taylor

APOC Madeleine Thomson, Hans Remme, Honorat Zoure, ...

Yale University/Fiocruz, Brazil: Federico Costa, Jose Hagan, Albert Ko

MRC: Methodology Research Grant G0902153

References

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems (with Discussion). Journal of the Royal Statistical Society B 36, 192–225.

Besag, J., York, J. and Mollié, A. (1991). Bayesian image restoration, with two applications in spatial statistics (with Discussion). Annals of the Institute of Statistical Mathematics, 43, 1–59.

Chilès, J-P and Delfiner, P. (2012). Geostatistics (second edition). Hoboken: Wiley.

Cressie, N.A.C. (1991). Statistics for Spatial Data. New York: Wiley.

Diggle, P.J., Moraga, P., Rowlingson, B. and Taylor, B. (2013). Spatial and spatio-temporal log-Gaussian Cox processes: extending the geostatistical paradigm. Statistical Science, 28, 542–563.

Diggle, P.J. and Ribeiro, P.J. (2007). Model-based Geostatistics. New York: Springer.

Diggle, P., Rowlingson, B. and Su, T. (2005). Point process methodology for on-line spatio-temporal disease surveillance. Environmetrics, 16, 423-34.

Diggle, P.J., Thomson, M.C., Christensen, O.F., Rowlingson, B., Obsomer, V., Gardon, J., Wanji, S., Takougang, I., Enyong, P., Kamgno, J., Remme, H., Boussinesq, M. and Molyneux, D.H. (2007). Spatial modelling and prediction of Loa loa risk: decision making under uncertainty. Annals of Tropical Medicine and Parasitology, 101, 499–509.

Møller, J., Syversveen, A. and Waagepetersen, R. (1998). Log Gaussian Cox processes. Scandinavian Journal of Statistics, 25, 451-82.

Royall, R. (1997). Statistical Evidence: a likelihood paradigm. London: Chapman and Hall.

Rue, H. and Held, L. (2005). Gaussian Markov Random Fields: Theory and Applications. London: CRC Press.

Wakefield, J. (2007). Disease mapping and spatial regression with count data. Biostatistics, 8, 158–183.