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Introduction

Space-time Geostatistics

Central question:
Is a physical model describing the time evolution of the
system available?

Topics:
Covariance functions (space-time, multivariate)
Kriging, filtering
Geostatistical simulation
Ensemble Kalman filtering

Now, a small warm-up example...
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Introduction

Gas furnace data (Box & Jenkins, 1970)

Gas input variation and percentage of CO2 in output have been measured
every 9 seconds for a gas furnace.

Input Linear System Output

Gas
=⇒

Furnace
=⇒

CO2

Delay : 45s
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Diagram

Gas input  vs  CO2 % output  (correlation: −.48)
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Correlation is clearly negative, but does not seem very strong.



Time series of input and output

Gas input (bottom)  and   CO2 % output  (top)
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Cross-covariance function: shows the delay effect
Stationary random functions Zi(t) and Zj(t):

Cij(τ) = E [(Zi(t)−mi)× (Zj(t + τ)−mj)]
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A 45s delay between GAS input variation and its effect on CO2 output !



Space-time kriging

Space-time covariance: simplifying assumptions

Let Z (x, t) with (x, t) ∈ Rd × R be a space-time random function.
The following simplifying assumptions about the space-time covariance are
useful in applications:

Separability:

cov(Z (x1, t1),Z (x2, t2)) = CS(x1, x2) · CT (t1, t2)

Full symmetry:

cov(Z (x1, t1),Z (x2, t2)) = cov(Z (x1, t2),Z (x2, t1))

Stationarity (translation invariance):

cov(Z (x1, t1),Z (x2, t2)) = C(x1 − x2, t1 − t2)
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Imbrication of the assumptions

fully symmetric

separable

stationary

General class of space−time covariance functions

From Gneiting, Genton & Guttorp (2007)



Irish wind case study - Gneiting, Genton & Guttorp (2007)

Winds in Ireland are predominantly westerly, so that the velocity
measures propagate from west to east.
Temporal correlations lead or lag between W and E stations at a daily
scale.
Exploratory analysis shows a lack of full symmetry and thereby of
separability in the correlation structure of the velocities.
Fitting different parametric models: separable, fully symetric but not
separable, stationary but not fully symmetric.
Space-time simple kriging results show the best performance with the
general stationary model in terms of four different preformance
measures.



Space-time kriging

Separable mean field

In case of a non-stationary random function it is also possible to consider a
separable mean field:

M(x, t) = M(x) + M(t)

To model the diurnal fluctuation of the magnetic field, Séguret & Huchon
(1990) use a finite trigonometric expansion of the form:

M(t) =
∑

i
Ai cos(ω, t) +

∑
i

Bi sin(ω, t)

where
ωi are fixed angular frequencies (e.g. 2π/24 for the daily cycle

and t in hours),
Ai ,Bi are unknown (possibly random) coefficients.
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Earth magnetism

Earth magnetism
Séguret & Huchon, JGR 1990

Magnetic anomalies are essential to study earth history.
Magnetism is influenced by several external factors like:

solar wind explaining daily fluctuations
(period: 24 hours)
rotation of the moon around the earth
(period: 28 days)
solar perturbartions
(half-year cycle)

Available data:
SEAPERC campaign (Ifremer, 1986) Data from a research vessel about

magnetism over a fractured area of 111 km2 off Peru.
Fluctuations of earth magnetism Measurements at a Peruvian observatory

for the time period of the campaign.
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Daily fluctuation of earth magnetism
Huancayo observatory (Peru): 22 to 28/08/1986

Time series (6 days) Variogram



SEAPERC campaign
Ship moves along a profile in 12 hours

Map Study area



Measurements at observatory and along ship route



Filtering the daily fluctuations of magnetism
Space-time model: Z(x, t) = Y (x) + m(t)

With time perturbations After geostatistical filtering



Simple kriging: filtering of measurement error

Simple kriging estimate:

zx = m + (cx + co
x )(C + Co)−1(zα −m)

where co
x , Co are a vector and a matrix of observational error covariances

(white or red noise).
Simple kriging is an exact interpolator.

Filtering of measurement error (by removing co
x ):

yx = m + (cx )(C + Co)−1(zα −m)

= m + k (zα −m)

Krige gain:
k = (cx )(C + Co)−1

(also called the kriging weights vector in geostatistics)



Simple kriging: filtering of measurement error

Simple kriging estimate:

zx = m + (cx + co
x )(C + Co)−1(zα −m)

where co
x , Co are a vector and a matrix of observational error covariances

(white or red noise).
Simple kriging is an exact interpolator.

Filtering of measurement error (by removing co
x ):

yx = m + (cx )(C + Co)−1(zα −m)

= m + k (zα −m)

Krige gain:
k = (cx )(C + Co)−1

(also called the kriging weights vector in geostatistics)



Linear Kalman filter
The recursions are initialized with ŷ0|−1 = 0 and C0|−1 = C0.
The recursion equations:

y t+1

z t+1

y t

tz

Propagation

y t+1

t+1

y t

tz

Update

z

ŷt+1|t = F ŷt|t

Ct+1|t = FCt|tF> + GQG>

ŷt+1|t+1 = ŷt+1|t + Kt+1(zt+1 − Hŷt+1|t)

Ct+1|t+1 = Ct+1|t − Kt+1HCt+1|t

Kalman gain:
Kt+1 = (Ct+1|t )H>(HCt+1|tH> + Co)−1

We note that observational error is filtered in the update (kriging) step.
The observational error covariance matrix Co does not appear in the
numerator of the Kalman gain.



Ensemble Kalman filter

Ensemble Kalman filter
Evensen (1994)

In the Ensemble Kalman filter (EnKF) the non-linear dynamics are
propagated by Monte-Carlo simulation.
This amounts to approximate the forecast distribution F (yt |z1:t−1) by an
ensemble of N members yf ,i

t .
Propagation

{ yf ,i
t =M(y?,it−1,u

i
t); i= 1, . . . ,N }

Update

{ y?,it = yf ,i
t + Kt(zt −H yf ,i

t + uo,i
t ); i= 1, . . . ,N }

The covariance matrices C f
t of the forecasts yf ,i

t and Co
t of the

observation errors uo,i
t are used to set up the Kalman gain Kt .

The covariance matrix C?
t of the updated state vectors y?,it is

computed directly on the ensemble.
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Properties of the Ensemble Kalman filter (EnKF)

The EnKF with an infinite ensemble will yield in the limit the same
result as the linear KF.
The EnKF is not a pure resampling of a Gaussian posterior: only the
updates are linear and these are added to the prior non-Gaussian
ensemble.
The updated ensemble will thus inherit of many of the non-Gaussian
properties from the forecast ensemble.
In summary: the analysis in the EnKF is computationally efficient and
avoids resampling of the posterior. The solution is midway between a
linear update and a full Bayesian computation.



Ecological model

1D Ecological model

Nutrients

Phytoplankton Herbivores
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EnKF: comparison

We test the performance of data assimilation with perturbed samples
taken from the numerical output.

Data: samples taken every 10 days,
perturbed with a white noise.

Ensemble: 100 members.

Comparison: EnKF with/without logarithmic transformation.



Logarithmic transformation
Nutrients, Herbivores, Phytoplankton



EnKF runs with and without anamorphosis



Atlantic: sea-surface temperature, C f
t variance

http://topaz.nersc.no

http://topaz.nersc.no


Atlantic: sea-surface temperature, C ?
t variance

http://topaz.nersc.no
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Conclusion

Summary

The choice of a space-time method depends on whether or not a
physical model describing the time evolution of the system is available.
Exploratory analysis of the covariance structure may suggest
simplifications, which will impact the numerical effort to produce
forecasts, nowcasts or reanalysis.
State-space models provide the framework for various flavours of
Kalman filters for systems with nonlinear dynamics.

Hans Wackernagel1 & Laurent Bertino2 (1MINES ParisTech, 2Nansen Environmental and Research Center Workshop on Spatiotemporal modelling with Gaussian processes University of Sheffield, January 2014 )Geostatistics for space-time analysis 26 / 30



References

L Bertino, G Evensen, and H Wackernagel.
Sequential data assimilation techniques in oceanography.
International Statistical Review, 71:223–241, 2003.

J P Chilès and P Delfiner.
Geostatistics: Modeling Spatial Uncertainty.
Wiley, New York, 2nd edition, 2012.
(See in particular section 5.8, pp370–385, on Space-Time Models).

G Evensen.
Data Assimilation: the Ensemble Kalman Filter.
Springer, Berlin, 2007.

T Gneiting, M G Genton, and P Guttorp.
Geostatistical space-time models, stationarity, separability and full symmetry.
In B Finkenstaedt, L Held, and V Isham, editors, Statistics of Spatio-Temporal Systems, pages 151–175. CRC Press,
2007.

C Lantuéjoul.
Geostatistical Simulation: Models and Algorithms.
Springer-Verlag, Berlin, 2002.

P Sakov, F Counillon, L Bertino, K A Lisaeter, P R Oke, and A Korablev.
TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic.
Ocean Sci., pages 633–656, 2012.

S Séguret and P Huchon.
Trigonometric kriging: a new method for removing the diurnal variation from geomagnetic data.
J. Geophysical Research, 32(B13):21.383–21.397, 1990.

H Wackernagel.
Multivariate Geostatistics: an Introduction with Applications.
Springer-Verlag, Berlin, 3rd edition, 2003.



Georges Matheron (1930-2000)

1955 First paper on geostatistics in Annales des Mines.
1962 Traité de Géostatistique Appliquée, BRGM (Technip).
1965 Les variables régionalisées et leur estimation: une application de la

théorie des fonctions aléatoires aux sciences de la nature, Masson.
1967 Eléments pour une théorie des milieux poreux, Masson.
1968 Creation of Centre de Morphologie Mathématique at Ecole des Mines.
1970 The Theory of Regionalized Variables and its Applications, Cahiers du

CMM (Oxford, 2014).
1975 Random sets and integral geometry, Wiley.
1978 Estimating and choosing (Springer, 1989; Presses des Mines, 2013).
1995 Retirement.

See also our electronic library:
http://cg.ensmp.fr/bibliotheque

http://www.pressesdesmines.com/author?id=568
http://cg.ensmp.fr/bibliotheque


Software

Geostatistics (free): http://RGeoS.free.fr

package RGeoS, which runs in R (open source) available
at: http://www.r-project.org
By the way, R can be used in a Matlab-like graphical environement by
installing additionnally: http://www.rstudio.com/ide
RGeoS runs with N spatial coordinates.

Geostatistics (commercial): http://www.geovariances.com

especially the standalone general purpose software Isatis.

Ensemble Kalman filter (free): http://EnKF.nersc.no

code in Fortran 90 as well as a Matlab package.

http://RGeoS.free.fr
http://www.r-project.org
http://www.rstudio.com/ide
http://www.geovariances.com
http://EnKF.nersc.no
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