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Batch Linear Regression [1/2]
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Consider the linear regression model

yk = θ1 + θ2 tk + εk , k = 1, . . . ,T ,

with εk ∼ N(0, σ2) and θ = (θ1, θ2) ∼ N(m0,P0).
In probabilistic notation this is:

p(yk |θ) = N(yk |Hk θ, σ
2)

p(θ) = N(θ |m0,P0),

where Hk = (1 tk).
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Batch Linear Regression [2/2]

The Bayesian batch solution by the Bayes’ rule:

p(θ | y1:T ) ∝ p(θ)
∏T

k=1 p(yk |θ)

= N(θ |m0,P0)
∏T

k=1 N(yk |Hk θ, σ
2).

The posterior is Gaussian

p(θ | y1:T ) = N(θ |mT ,PT ).

The mean and covariance are given as

mT =

[
P−1

0 +
1

σ2
HTH

]−1 [ 1

σ2
HTy + P−1

0 m0

]
PT =

[
P−1

0 +
1

σ2
HTH

]−1

,

where Hk = (1 tk), H = (H1; H2; . . . ; HT ), y = (y1; . . . ; yT ).
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Recursive Linear Regression [1/3]

Assume that we have already computed the posterior distribution,
which is conditioned on the measurements up to k − 1:

p(θ | y1:k−1) = N(θ |mk−1,Pk−1).

Assume that we get the kth measurement yk . Using the equations
from the previous slide we get

p(θ | y1:k) ∝ p(yk |θ) p(θ | y1:k−1)

∝ N(θ |mk ,Pk).

The mean and covariance are given as

mk =

[
P−1
k−1 +

1

σ2
HT

k Hk

]−1 [ 1

σ2
HT

k yk + P−1
k−1mk−1

]
Pk =

[
P−1
k−1 +

1

σ2
HT

k Hk

]−1

.
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Recursive Linear Regression [2/3]

By the matrix inversion lemma (or Woodbury identity):

Pk = Pk−1 − Pk−1HT
k

[
HkPk−1HT

k + σ2
]−1

HkPk−1.

Now the equations for the mean and covariance reduce to

Sk = HkPk−1HT
k + σ2

Kk = Pk−1HT
k S
−1
k

mk = mk−1 + Kk [yk −Hkmk−1]

Pk = Pk−1 −KkSkKT
k .

Computing these for k = 0, . . . ,T gives exactly the linear regression
solution.

A special case of Kalman filter.
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Recursive Linear Regression [3/3]
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Batch vs. Recursive Estimation [1/2]

General batch solution:

Specify the measurement model:

p(y1:T |θ) =
∏
k

p(yk |θ).

Specify the prior distribution p(θ).

Compute posterior distribution by the Bayes’ rule:

p(θ | y1:T ) =
1

Z
p(θ)

∏
k

p(yk |θ).

Compute point estimates, moments, predictive quantities etc. from
the posterior distribution.
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Batch vs. Recursive Estimation [2/2]

General recursive solution:

Specify the measurement likelihood p(yk |θ).

Specify the prior distribution p(θ).

Process measurements y1, . . . , yT with the Bayes’ rule one at a time,
starting from the prior:

p(θ | y1) =
1

Z1
p(y1 |θ)p(θ)

p(θ | y1:2) =
1

Z2
p(y2 |θ)p(θ | y1)

...

p(θ | y1:T ) =
1

ZT
p(yT |θ)p(θ | y1:T−1).

The posterior at the last step is the same as the batch solution.
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Drift Model for Linear Regression [1/4]

Let assume Gaussian random walk between the measurements in the
linear regression model:

p(yk |θk) = N(yk |Hk θk , σ
2)

p(θk |θk−1) = N(θk |θk−1,Q)

p(θ0) = N(θ0 |m0,P0).

Again, assume that we already know

p(θk−1 | y1:k−1) = N(θk−1 |mk−1,Pk−1).

The joint distribution of θk and θk−1 is (due to Markovianity of
dynamics!):

p(θk ,θk−1 | y1:k−1) = p(θk |θk−1) p(θk−1 | y1:k−1).
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Drift Model for Linear Regression [2/4]

Integrating over θk−1 gives:

p(θk | y1:k−1) =

∫
p(θk |θk−1) p(θk−1 | y1:k−1) dθk−1.

This equation for Markov processes is called the
Chapman-Kolmogorov equation.

Because the distributions are Gaussian, the result is Gaussian

p(θk | y1:k−1) = N(θk |m−k ,P
−
k ),

where

m−k = mk−1

P−k = Pk−1 + Q.
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Drift Model for Linear Regression [3/4]

As in the pure recursive estimation, we get

p(θk | y1:k) ∝ p(yk |θk) p(θk | y1:k−1)

∝ N(θk |mk ,Pk).

After applying the matrix inversion lemma, mean and covariance can
be written as

Sk = HkP−k HT
k + σ2

Kk = P−k HT
k S
−1
k

mk = m−k + Kk [yk −Hkm−k ]

Pk = P−k −KkSkKT
k .

Again, we have derived a special case of the Kalman filter.

The batch version of this solution would be much more complicated.
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Drift Model for Linear Regression [4/4]
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State Space Notation

In the previous slide we formulated the model as

p(θk |θk−1) = N(θk |θk−1,Q)

p(yk |θk) = N(yk |Hk θk , σ
2)

But in Kalman filtering and control theory the vector of parameters
θk is usually called “state” and denoted as xk .

More standard state space notation:

p(xk | xk−1) = N(xk | xk−1,Q)

p(yk | xk) = N(yk |Hk xk , σ
2)

Or equivalently

xk = xk−1 + qk−1

yk = Hk xk + rk ,

where qk−1 ∼ N(0,Q), rk ∼ N(0, σ2).

Simo Särkkä (Aalto University) State Space Representation of GPs January 16, 2014 15 / 70



Probabilistics State Space Models

Generally, Markov model for the state:

xk ∼ p(xk | xk−1).

Likelihood distribution of the measurement:

yk ∼ p(yk | xk).

Has the form of hidden Markov model (HMM):

observed: y1 y2 y3 y4

hidden: x1
//

OO

x2
//

OO

x3
//

OO

x4
//

OO

. . .
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Probabilistics State Space Models: Example

Example (Gaussian random walk)

Gaussian random walk model can be written as

xk = xk−1 + wk−1, wk−1 ∼ N(0, q)

yk = xk + ek , ek ∼ N(0, r),

where xk is the hidden state and yk is the measurement. In terms of
probability densities the model can be written as

p(xk | xk−1) =
1√
2πq

exp

(
− 1

2q
(xk − xk−1)2

)
p(yk | xk) =

1√
2πr

exp

(
− 1

2r
(yk − xk)2

)
which is a discrete-time state space model.
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Probabilistics State Space Models: Example (cont.)

Example (Gaussian random walk (cont.))
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Probabilistics State Space Models: Further Examples

Linear Gauss-Markov model – which defines a Gaussian process:

xk = Ak−1 xk−1 + qk−1

yk = Hk xk + rk ,

Gaussian driven non-linear model – a non-Gaussian process:

xk = f(xk−1,qk−1)

yk = h(xk , rk).

Continuous-discrete-time models – these correspond to GP regression

dx

dt
= a(x) + L(x) w(t)

yk ∼ p(yk | x(tk)).
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Bayesian Filtering, Prediction and Smoothing

In principle, we could just use the (batch) Bayes’ rule

p(x1, . . . , xT | y1, . . . , yT )

=
p(y1, . . . , yT | x1, . . . , xT ) p(x1, . . . , xT )

p(y1, . . . , yT )
,

Curse of computational complexity: complexity grows more than
linearly with number of measurements (typically we have O(T 3)).
Hence, we concentrate on the following:

Filtering distributions:

p(xk | y1, . . . , yk), k = 1, . . . ,T .

Prediction distributions:

p(xk+n | y1, . . . , yk), k = 1, . . . ,T , n = 1, 2, . . . ,

Smoothing distributions:

p(xk | y1, . . . , yT ), k = 1, . . . ,T .
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Bayesian Filtering, Prediction and Smoothing (cont.)

Measurements Estimate

0 Tk

Prediction:

Filtering:

Smoothing:
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Bayesian Filter: Principle

Bayesian optimal filter computes the distribution

p(xk | y1:k)

Given the following:
1 Prior distribution p(x0).
2 State space model:

xk ∼ p(xk | xk−1)

yk ∼ p(yk | xk),

3 Measurement sequence y1:k = y1, . . . , yk .

Computation is based on recursion rule for incorporation of the new
measurement yk into the posterior:

p(xk−1 | y1:k−1) −→ p(xk | y1:k)
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Bayesian Optimal Filter: Formal Equations

Optimal filter

Initialization: The recursion starts from the prior distribution p(x0).

Prediction: by the Chapman-Kolmogorov equation

p(xk | y1:k−1) =

∫
p(xk | xk−1) p(xk−1 | y1:k−1) dxk−1.

Update: by the Bayes’ rule

p(xk | y1:k) =
1

Zk
p(yk | xk) p(xk | y1:k−1).

The normalization constant Zk = p(yk | y1:k−1) is given as

Zk =

∫
p(yk | xk) p(xk | y1:k−1) dxk .
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Bayesian Optimal Filter: Graphical Explanation

On prediction step the

distribution of previous

step is propagated through

the dynamics.

Prior distribution from

prediction and the

likelihood of measurement.

The posterior distribution

after combining the prior

and likelihood by Bayes’

rule.
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Filtering Algorithms

Kalman filter is the classical optimal filter for linear-Gaussian models.

Extended Kalman filter (EKF) is linearization based extension of
Kalman filter to non-linear models.

Unscented Kalman filter (UKF) is sigma-point transformation based
extension of Kalman filter.

Gauss-Hermite and Cubature Kalman filters (GHKF/CKF) are
numerical integration based extensions of Kalman filter.

Particle filter forms a Monte Carlo representation (particle set) to the
distribution of the state estimate.

Grid based filters approximate the probability distributions on a finite
grid.

Mixture Gaussian approximations are used, for example, in multiple
model Kalman filters and Rao-Blackwellized Particle filters.

Simo Särkkä (Aalto University) State Space Representation of GPs January 16, 2014 26 / 70



Kalman Filter Example

Simo Särkkä (Aalto University) State Space Representation of GPs January 16, 2014 27 / 70



Kalman Filter Example
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Kalman Filter Example
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Bayesian Smoothing Problem

We have a probabilistic state space model:

yk ∼ p(yk | xk)

xk ∼ p(xk | xk−1)

Assume that the filtering distributions p(xk | y1:k) have already been
computed for all k = 0, . . . ,T .

We want recursive equations of computing the smoothing distribution
for all k < T :

p(xk | y1:T ).

The recursion will go backwards in time, because on the last step, the
filtering and smoothing distributions coincide:

p(xT | y1:T ).

Simo Särkkä (Aalto University) State Space Representation of GPs January 16, 2014 28 / 70



Bayesian Smoothing Equations

Bayesian Smoothing Equations

The Bayesian smoothing equations consist of prediction step and backward
update step:

p(xk+1 | y1:k) =

∫
p(xk+1 | xk) p(xk | y1:k) dxk

p(xk | y1:T ) = p(xk | y1:k)

∫ [
p(xk+1 | xk) p(xk+1 | y1:T )

p(xk+1 | y1:k)

]
dxk+1

The recursion is started from the filtering (and smoothing) distribution of
the last time step p(xT | y1:T ).
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Smoothing Algorithms

Rauch-Tung-Striebel (RTS) smoother is the closed form smoother for
linear Gaussian models.

Extended, statistically linearized and unscented RTS smoothers are
the approximate nonlinear smoothers corresponding to EKF, SLF and
UKF.

Gaussian RTS smoothers: cubature RTS smoother, Gauss-Hermite
RTS smoothers and various others

Particle smoothing is based on approximating the smoothing solutions
via Monte Carlo.

Rao-Blackwellized particle smoother is a combination of particle
smoothing and RTS smoothing.
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Rauch-Tung-Striebel Smoother Example
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Continuous-time Limit of the Random Walk Model [1/3]

Our discrete-time random walk model had the form

xk = xk−1 + wk−1, wk−1 ∼ N(0, q)

yk = xk + ek , ek ∼ N(0, r),

Assume that, in fact, it was a discretely-observed random walk model

x(tk) = x(tk−1) + wk−1, wk−1 ∼ N(0, q)

yk = x(tk) + ek , ek ∼ N(0, r).

Between the measurements we actually have n intermediate steps:

y1 y2 y3 . . .

x(t1) //

OO

x(t ′1) // x(t ′′1 ) . . . x(t2) //

OO

x(t ′2) . . . x(t3)

OO

. . .
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Continuous-time Limit of the Random Walk Model [2/3]
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Continuous-time Limit of the Random Walk Model [3/3]

With n =∞ intermediate steps we get a discretely observed
stochastic differential equation (SDE) model:

dx(t)

dt
= w(t),

yk = x(tk) + ek , ek ∼ N(0, r).

Now w(t) is a continuous-time white noise with spectral density q.

The process defined as dx(t)/dt = w(t) is called Brownian motion.

Hence, we actually have a Gaussian process regression model

x(t) ∼ GP(0, q min(t, t ′)),

yk = x(tk) + ek , ek ∼ N(0, r).

Kalman filter and RTS smoother can still be used to compute the
posterior of x(t) given the observations y1, . . . , yT
. . . which is the GP regression solution!
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Continuous-discrete (-time) Filter and Smoother Example
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Continuous-Discrete Baysian Filtering

General continuous-discrete filtering model:

dx

dt
= a(x) + L(x) w(t)

yk ∼ p(yk | x(tk)).

Continuous-Discrete Bayesian Optimal filter

1 Prediction step: Solve the Fokker-Planck-Kolmogorov PDE

∂p

∂t
= −

∑
i

∂

∂xi
(ai (x) p) +

1

2

∑
ij

∂2

∂xi∂xj

(
[L(x) Q LT(x)]ij p

)
2 Update step: Apply the Bayes’ rule.

p(x(tk) | y1:k) =
p(yk | x(tk)) p(x(tk) | y1:k−1)∫

p(yk | x(tk)) p(x(tk) | y1:k−1) dx(tk)
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Continuous-Discrete Baysian Filtering (cont.)

Continuous-discrete non-linear Kalman filters are considered with
models of the form:

dx

dt
= a(x) + L(x) w(t)

yk = h(x(tk)) + rk .

Kalman filters form a Gaussian (process) approximation to the
posterior of the process x(t).

The resulting approximation is of the form

p(x(t) | y1:k) ≈ N(x(t) |m(t),P(t)), t ∈ [tk , tk+1),

where m(t) and P(t) are computed by the non-linear Kalman filter.

Different brands: EKF, UKF, CKF, GHKF, etc.
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Continuous-Discrete Baysian Smoothing

Continuous-discrete (-time) smoothing refers to recursive
computation of the distributions

p(x(t) | y1:T ), t ∈ [t0, tT ].

Discrete-time smoothing: compute p(x(tk) | y1:T ) for k = 1, . . . ,T .

The (discrete-time) Bayesian smoothing equation is

p(x(tk) | y1:T ) = p(x(tk) | y1:k)

×
∫

p(x(tk+1) | y1:T ) p(x(tk+1) | x(tk))

p(x(tk+1) | y1:k)
dx(tk+1).

The continuous-time version of the above is a quite complicated
partial differential equation (PDE).

Continuous-discrete non-linear Gaussian smoother can be derived by
computing the continuous-time limit of the Gaussian discrete-time
smoother.
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Definition and Notation of Gaussian Processes in
Regression

Spatial Gaussian process (GP) or Gaussian field is a random function
f(x), such that all finite-dimensional distributions p(f(x1), . . . , f(xn))
are Gaussian.

Note that x is the input – not the state! – BEWARE of the notation!

Can be defined in terms of mean and covariance functions:

m(x) = E[f(x)]

K(x, x′) = E[(f(x)−m(x)) (f(x′)−m(x′))T].

The joint distribution of an arbitrary collection of random variables
f(x1), . . . , f(xn) is then given asf(x1)

...
f(xn)

 ∼ N


m(x1)

...
m(xn)

 ,

K(x1, x1) . . . K(x1, xn)
...

. . .

K(xn, x1) K(xn, xn)



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Definition and Notation of Gaussian Processes in
Regression (cont.)

Gaussian process regression (Rasmussen & Williams, 2006):

GPs are used as non-parametric prior models for ”learning”
input-output Rd 7→ Rm mappings in form y = f(x).
A set of noisy training samples D = {(x1, y1), . . . , (xn, yn)} given.
The values of function f(x) at measurement points and test points are
of interest.

Temporal Gaussian process (GP) is a temporal random function f(t),
such that joint distribution of f(t1), . . . , f(tn) is always Gaussian.

In this case the input is the time t and thus our regressor functions
have the form y = f(t).

Mean and covariance functions have the form:

m(t) = E[f(t)]

K(t, t ′) = E[(f(t)−m(t)) (f(t ′)−m(t ′))T].
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Gaussian Process Regression as State Estimation

Consider a GP regression problem with measurements y1, . . . , yT :

yk = f (tk) + ek , ek ∼ N(0, σ2).

The covariance function of f (t) can be, e.g.,

K (t, t ′) = s2 exp

(
− 1

2`2
||t − t ′||2

)
,

We now assert that it is possible to form a state space model

df(t)

dt
= A f(t) + Lw(t)

yk = H f(tk) + ek .

such that a linear Kalman filter/smoother computes the
GP-regression solution.

The solution has complexity O(T ) when GP-regression has O(T 3).
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Gaussian Process Regression Example
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Representations of Temporal Gaussian Processes
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Representations of Temporal Gaussian Processes

Example: Ornstein-Uhlenbeck process – path representation as a
stochastic differential equation (SDE):

df (t)

dt
= −λ f (t) + w(t).

where w(t) is a white noise process.

The mean and covariance functions:

m(t) = 0

k(t, t ′) = exp(−λ|t − t ′|)

Spectral density:

S(ω) =
2λ

ω2 + λ2

Ornstein-Uhlenbeck process f (t) is Markovian in the sense that given
f (t) the past {f (s), s < t} does not affect the distribution of the
future {f (s ′), s ′ > t}.
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State Space Form of Linear Time-Invariant SDEs

Consider a Nth order LTI SDE of the form

dN f

dtN
+ aN−1

dN−1f

dtN−1
+ · · ·+ a0f = w(t).

If we define f = (f , . . . , dN−1f /dtN−1), we get a state space model:

df

dt
=


0 1

. . .
. . .

0 1
−a0 −a1 . . . −aN−1


︸ ︷︷ ︸

A

f +


0
...
0
1


︸ ︷︷ ︸

L

w(t)

f (t) =
(
1 0 · · · 0

)︸ ︷︷ ︸
H

f.

The vector process f(t) is now time-Markovian although f (t) is not.
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Spectra of Linear Time-Invariant SDEs

By taking the Fourier transform of the LTI SDE, we can derive the
spectral density which has the form:

S(ω) =
(constant)

(polynomial in ω2)

It turns out that we can also do this conversion to the other direction:

With certain parameter values, the Matérn has the form:

S(ω) ∝ (λ2 + ω2)−(p+1).

Many non-rational spectral densities can be approximated, e.g.:

S(ω) = σ2

√
π

κ
exp

(
−ω

2

4κ

)
≈ (const)

N!/0!(4κ)N + · · ·+ ω2N

For the conversion of a rational spectral density to a Markovian
(state-space) model, we can use the classical spectral factorization –
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Converting Covariance Functions to State Space Models

Spectral factorization finds rational stable transfer function

G (i ω) =
bm (i ω)m + · · ·+ b1 (i ω) + b0

an (i ω)n + · · ·+ a1 (i ω) + a0

such that
S(ω) = G (i ω) qc G (−i ω).

The procedure practice:

Compute the roots of the numerator and denominator polynomials.
Construct the numerator and denominator polynomials of the transfer
function G (i ω) from the positive-imaginary-part roots only.

The SDE is then the inverse Fourier transform of

F (i ω) = G (i ω)W (i ω).

Can be further converted into a state space model whose
(vector-valued) state is Markovian.
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GP to State Spate Conversion in Practice

Converting a covariance function into state space model

1 Compute the corresponding spectral density S(ω) by computing the
Fourier transform of K (τ).

2 If S(ω) is not a rational function, approximate it with such a function,
e.g., via Taylor series expansions or Padé approximants.

3 Find a stable rational transfer function G (i ω) and constant qc such
that

S(ω) = G (i ω) qc G (−i ω).

via the spectral factorization.

4 Use the methods from control theory to convert the transfer function
model into an equivalent state space model.
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Application to Gaussian Process Regression

Consider a Gaussian process regression problem of the form

f (x) ∼ GP(0, k(x , x ′))

yk = f (xk) + ek , ek ∼ N(0, σ2
noise).

Renaming x into time t gives:

f (t) ∼ GP(0, k(t, t ′))

yk = f (tk) + ek , ek ∼ N(0, σ2
noise).

We can use the method to convert this to state estimation problem:

df(t)

dt
= A f(t) + Lw(t)

yk = H f(tk) + ek .
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Kalman Filter and RTS Smoother Solution

Kalman filter and RTS smoother can be used for efficiently
computing posteriors of models of the state space form

df(t)

dt
= A f(t) + L w(t)

yk = H f(tk) + ek ,

where yk is the measurement and ek ∼ N(0,Rk).

With n measurements, complexity of KF/RTS is O(n), when the
brute-force GPR solution is O(n3).

⇒ Many Gaussian process regression (or e.g. Kriging/inverse)
problems can be more efficiently solved with KF & RTS
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Example: Matérn Covariance Function

Example (1D Matérn covariance function)

1D Matérn family is (τ = |t − t ′|):

k(τ) = σ2 21−ν

Γ(ν)

(√
2ν

τ

l

)ν
Kν

(√
2ν

τ

l

)
,

where ν, σ, l > 0 are the smoothness, magnitude and length scale
parameters, and Kν(·) the modified Bessel function.

For example, when ν = 5/2, we get

df(t)

dt
=

 0 1 0
0 0 1
−λ3 −3λ2 −3λ

 f(t) +

0
0
1

 w(t).
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Inference in Practice

Conventional GP regression:
1 Evaluate the covariance function at the training and test set points.
2 Use GP regression formulas to compute the posterior process statistics.
3 Use the mean function as the prediction.

State-space GP regression:
1 Form the state space model.
2 Run Kalman filter through the measurement sequence.
3 Run RTS smoother through the filter results.
4 Use the smoother mean function as the prediction.

With both GP regression and state-space formulation we have the
corresponding parameter estimation methods – see, e.g., Rasmussen
& Williams (2006) and Särkkä (2013), respectively.
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State-Space GP Regression Demo
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State-Space GP Regression Demo
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State-Space GP Regression Demo (cont.)

Comparison of GP regression (L) and RTS smoother (R) results

Simo Särkkä (Aalto University) State Space Representation of GPs January 16, 2014 55 / 70



From Temporal to Spatio-Temporal Processes

The temporal vector-valued process becomes an infinite-dimensional
function (Hilbert space) -valued process:

f(t) =

f1(t)
...

fn(t)

→
f (x1, t)

...
f (xn, t)

→ f (x, t), x ∈ Rd .
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State Space Inference in Spatio-Temporal Processes

Spatio-temporal GP-regression problem:

f(x, t) ∼ GP(0,K(x, x′; t, t ′))

yk = f(xk , tk) + ek

We can convert this into infinite-dimensional state-space model with
operators A and Hk :

∂f(x, t)

∂t
= A f(x, t) + L w(x, t)

yk = Hk f(x, tk) + ek

We can use the infinite-dimensional Kalman filter and RTS smoother
– scale linearly in time dimension.

We can approximate with PDE methods such as basis function
expansions, FEM, finite-differences, spectral methods, etc.

Above the infinite-dimensional process t 7→ f(·, t) is Markovian.
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Example: 2D Matérn Covariance Function

Example (2D Matérn covariance function)

The multidimensional Matérn covariance function is the following
(r = ||ξ − ξ′||, for ξ = (x1, x2, . . . , xd−1, t) ∈ Rd):

k(r) = σ2 21−ν

Γ(ν)

(√
2ν

r

l

)ν
Kν

(√
2ν

r

l

)
.

For example, if ν = 1 and d = 2, we get the following:

∂f(x , t)

∂t
=

(
0 1

∂2/∂x2 − λ2 −2
√
λ2 − ∂2/∂x2

)
f(x , t)+

(
0
1

)
w(x , t).

x

t
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State Space Inference in Latent Force Models

A latent force model is of the form

dxf (t)

dt
= g(xf (t)) + u(t),

where u(t) is the latent force.

We measure the system at discrete instants of time:

yk = xf (tk) + rk

Let’s now model u(t) as a Gaussian process of Matern type

K (τ) = σ2 21−ν

Γ(ν)

(√
2ν

τ

l

)ν
Kν

(√
2ν

τ

l

)
Recall that if, for example, ν = 1/2 then the GP can be expressed as
the solution of the stochastic differential equation (SDE)

du(t)

dt
= −λ u(t) + w(t)
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State Space Inference in Latent Force Models (cont.)

If we define x = (xf , u), we get a two-dimensional SDE

dx

dt
=

(
g(x1(t)) + x2(t)
−λ x2(t)

)
︸ ︷︷ ︸

a(x)

+

(
0
1

)
︸︷︷︸

L

w(t)

We can now rewrite the measurement model as

yk =
(
1 0

)︸ ︷︷ ︸
H

x(tk) + rk

Thus the result is a model of the generic form

dx

dt
= a(x) + L w(t)

yk = H x(tk) + rk .

This model can now be efficiently tackled with non-linear Kalman
filtering and smoothing.
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Other Extensions

Change-detection via combining state-space GPs with switching
models and methods such as IMM or EC.

Distributed latent force models, i.e., combined partial differential
equation (PDE) and GP models.

Outlier-robust GPs via Student-t measurement model or via classical
clutter rejection methods.

Online parameter estimation via sequential Monte Carlo,
state-augmentation, online-EM, variational Bayes, and other methods.

Classification corresponds to replacing the linear-Gaussian
measurement model with a non-Gaussian one.

Non-linear spatio-temporal (PDE) models via using non-linear
infinite-dimensional Kalman filter and smoothers.
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GPS Satellite Orbit Prediction

Accurate orbit prediction improves Time To First Fix (TTFF) when
network is not available for A-GPS.

The equation of motion for the satellite can be written as

d

dt

[
r
v

]
=

[
v

a(r, t) + u(r, v, t)

]
.

The deterministic model for acceleration is

a(r, t) = ag + amoon + asun + asrp.

Most modeling errors reside in the solar radiation pressure asrp

Unknown forces u(r, v, t) modeled as state-space GPs.
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GPS Satellite Orbit Prediction: Prediction Results
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Spatio-Temporal Modeling of Precipitation
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Spatio-temporal interpolation of precipitation levels based on monthly
data, years 1895–1997, Colorado, US.

We used an infinite-dimensional state-space GP model with the
non-separable spatio-temporal Matérn covariance function.

Truncated eigenfunction expansion of the Laplace operator with 384
eigenfunctions.
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Oscillatory Structures in fMRI Brain Data
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Spatio-temporal estimation of heart beat induced oscillations in fMRI
brain data (measured at AMI centre, Finland).

Superposition of spatio-temporal oscillators (GPs as well):

∂2fj(x, t)

∂t2
+ Aj

∂fj(x, t)

∂t
+ Bj fj(x, t) = ξj(x, t).

Spatial smoothness controlled by the spectral density kernel of ξj(·, t).
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Summary

Bayesian filtering and smoothing methods solve dynamic Bayesian
inference problems recursively.

Bayesian continuous-discrete filtering and smoothing = state
estimation in non-linear stochastic differential equation models.

GP regression models can be often recasted as state space models
and solved via Kalman filtering and smoothing.

The infinite-dimensional generalization leads to space-space
representations of spatio-temporal processes.

Using state-space GPs as models for latent functions in differential
equations leads to state-space latent force models.

The Bayesian estimation in these half-nonparametric models can be
implemented with non-linear Kalman filtering and smoothing.
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