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The framework

In this talk we focus on the problem of determining the set

Γ ? = {x ∈ D : f (x) ∈ T} = f −1(T )

where D ⊂ Rd is compact, f : D −→ Rk is measurable, T ⊂ Rk .

Here: k = 1, f is continuous, and T = (−∞, t] for a fixed t ∈ R.

Γ ? = {x ∈ D : f (x) ≤ t} is denoted the excursion set of f below t.

Objective

Estimate Γ ? and quantify uncertainty on it when f is evaluated only at a
few points Xn = {x1, . . . , xn} ⊂ D.
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The framework: IRSN test case
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Test case:

I keff function of PuO2 density and
H2O thickness, D = [0.2, 5.2]× [0, 5];

I continuous function, expensive to
evaluate;

I n = 20 observations (black triangles);

Objective: estimate
Γ ? = {x ∈ D : f (x) ≤ t} and evaluate the
uncertainty of the estimate.

Acknowledgements: Yann Richet, Institut de Radioprotection et de Sûreté Nucleaire.

dario.azzimonti@stat.unibe.ch Bayesian set estimation with GPs 5 / 43



Introduction
Expectations of random closed sets

Quasi-realizations for excursion sets estimation
Conservative estimates

The framework: an example

Gaussian random field realization Function f : D ⊂ Rd → R

I expensive to evaluate;

I continuous.

Evaluated at
Xn = (x1, . . . , xn) (black triangles)
with values fn = (f (x1), . . . , f (xn)).

Objective: estimate
Γ ? = {x ∈ D : f (x) ≤ t} and
evaluate the uncertainty of the
estimate.
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Bayesian approach

Bayesian framework: f is seen as one realization of a (GRF) (Zx)x∈D
with prior mean m and covariance kernel k .

Given the function evaluations fn the posterior field has a Gaussian
distribution

Z | (Z (Xn) = fn)

with mean and covariance kernel

mn(x) = m(x) + k(x ,Xn)k(Xn,Xn)−1(fn −m(Xn))

kn(x , y) = k(x , y)− k(x ,Xn)k(Xn,Xn)−1k(Xn, y)

Γ ? is a realization of Γ = {x ∈ D : Zx ≤ t} = Z−1((−∞, t])
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A prior on the space of functions

Assume: f realization of (Zx)x∈D , Gaussian Random Field (GRF)

Prior: (Zx)x∈D with

I a.s. continuous paths;

I Matérn covariance kernel k (ν = 3/2);

I constant mean function m.

Given n = 15 evaluations fn at Xn

Posterior field: Z | ZXn = fn
with mean mn and covariance kn.
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Distribution of excursion sets

The posterior field defines posterior distribution on excursion sets.
Γ = {x ∈ D : Zx ≤ t}
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How to summarize the distribution on sets?

The posterior excursion set is a random closed set.

Here we focus on Expectations of random closed sets1

I Vorob’ev expectation

I distance average expectation

Conservative estimates, based on Vorob’ev quantiles.

1. for more definitions of expectation see Molchanov, I. (2005). Theory of Random Sets. Springer.
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Main references:

E. Vazquez and M. P. Martinez. (2006). Estimation of the volume of an excursion set
of a Gaussian process using intrinsic kriging. Tech Report. arXiv:math/0611273.

Ranjan, P., Bingham, D., and Michailidis, G. (2008). Sequential experiment design for
contour estimation from complex computer codes. Technometrics, 50(4):527541.

Bect, J., Ginsbourger, D., Li, L., Picheny, V., and Vazquez, E. (2012). Sequential
design of computer experiments for the estimation of a probability of failure. Stat.
Comput., 22 (3):773793.

Chevalier, C., Bect, J., Ginsbourger, D., Vazquez, E., Picheny, V., and Richet, Y.
(2014). Fast kriging-based stepwise uncertainty reduction with application to the
identification of an excursion set. Technometrics.

Chevalier, C., Ginsbourger, D., Bect, J., and Molchanov, I. (2013). Estimating and
quantifying uncertainties on level sets using the Vorobev expectation and deviation
with Gaussian process models. mODa 10.

Bolin, D. and Lindgren, F. (2015), French, J. P. and Sain, S. R. (2013)

and references therein...
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Vorob’ev quantiles
The function

pn : x ∈ D → pn(x) = Pn(x ∈ Γ ) ∈ [0, 1]

is the coverage function of Γ , where Pn(·) = P(· | ZXn = fn).

Coverage probability function

In the Gaussian case

I fast to compute

pn(x) = Φ

(
mn(x)−t√
kn(x,x)

)
I marginal statement

I creates a family of set estimates
Qρ = {x ∈ D : pn(x) ≥ ρ}
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Vorob’ev expectation
Consider a Borel measure µ on D. From the family of “quantiles” Qρ we
can choose Qρ̃ such that µ(Qρ̃) = E[µ(Γ )].

Vorob'ev expectation

Properties:

I based on the measure µ;

I for some choices of µ, fast to
compute;

I no confidence statements on the
set.

Chevalier, C., Ginsbourger, D., Bect, J., and Molchanov, I. (2013). Estimating and
quantifying uncertainties on level sets using the Vorobev expectation and deviation
with Gaussian process models. mODa 10
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Distance average approach

Consider the distance function d : (x , Γ )→ d(x , Γ ).

Γ is random therefore d(x , Γ ) is a random variable for each x ∈ D.
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Distance average expectation

Given the distance function d(x , Γ ), the expected distance function

d(x) = E[d(x , Γ )]

The distance average expectation of Γ is the set

EDF [Γ ] = {x ∈ D : d(x) ≤ ε} where

ε is chosen in order to obtain a distance function for the set EDF [Γ ] as
“close” as possible to d in a L2 sense.

An uncertainty assessment for the estimate is

DFVΓ = E‖d(·)− d(·, Γ )‖2
2
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Distance average approach
Consider the distance function d : (x , Γ )→ d(x , Γ ).

For each realization of Γ (expensive!) we compute the distance function
and then consider an average over the functions.
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Distance average expectation
Distance average expectation

EDF [Γ ] = {x ∈ D : d(x) ≤ ε}
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An approximate Gaussian random field

Assumption: the GRF Z has been evaluated at x1, . . . , xn ∈ D.

We denote by ZE = (Ze1 , . . . ,Zem)′ the random vector of values of Z at
E = {e1, . . . , em} ⊂ D.

Here we focus on affine predictors of Z of the form

Z̃x = a(x) + bT (x)ZE (x ∈ D),

where a : D −→ R is a trend function and b : D −→ Rm is a
vector-valued function of deterministic weights.

Similarly, we approximate Γ by the excursion set of Z̃ :
Γ̃ = {x ∈ D : Z̃x ≤ t}
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Towards an optimal design of simulation points

The simulation points E could be chosen with a LHS design (m = 30)

However, we do not control on how close is Γ to Γ̃
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What distance between Γ to Γ̃?

Definition: the function

(Γ1, Γ2) ∈ D × D −→ dµ,n(Γ1, Γ2) = E[µ(Γ1∆Γ2) | ZXn = fn]

is called expected distance in measure between Γ1, Γ2.

Proposition: distance in measure between Γ and Γ̃

a) If Z and Z̃ are random fields such that Γ and Γ̃ are random closed
sets, D ⊂ Rd is compact and µ is a finite Borel measure on D, we have

dµ,n(Γ, Γ̃ ) =

∫
ρn,m(x)µ(dx) where

ρn,m(x) = Pn(x ∈ Γ∆Γ̃ ) = Pn(Zx ≥ t, Z̃x < t) + Pn(Zx < t, Z̃x ≥ t)
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Towards an optimal design of simulation points

Proposition: distance in measure between Γ and Γ̃

b) If Z is Gaussian conditionally on ZXn with conditional mean mn and
conditional covariance kernel kn, we get

Pn(Zx ≥ t, Z̃x < t) = Φ2 (cn(x ,E ),Σn(x ,E )),

with cn(x ,E ) =

(
mn(x)− t
t − a(x)− b(x)Tmn(E )

)
and Σn(x ,E ) =

(
kn(x , x) −b(x)Tkn(E , x)
−b(x)Tkn(E , x) b(x)Tkn(E ,E )b(x)

)
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Towards an optimal design of simulation points

c) Particular case: If Z̃ is chosen as best linear unbiased predictor of Z
given Z (Xn), then b(x) = kn(E ,E )−1kn(E , x) so that

Σn(x ,E ) =

(
kn(x , x) −γn(x ,E )
−γn(x ,E ) γn(x ,E )

)
where γn(x ,E ) = Varn[Ẑx ] = kn(E , x)Tkn(E ,E )−1kn(E , x).

Optimal design(s) of simulation points can be obtained by minimizing

dµ,n(Γ, Γ̃ (E )) =

∫
Φ2 (cn(x ,E ),Σn(x ,E )) + Φ2 (−cn(x ,E ),Σn(x ,E ))µ(dx)

over (e1, . . . , em) ∈ Dm.
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Procedure overview

Approximate Z at each point with

Z̃x = a(x) + bT (x)ZE with E = {e1, . . . , em}

The points in E are chosen with one of the following algorithms:

Algorithm A (Full criterion): sequential minimization of

dµ,n(Γ, Γ̃ (E∗i )) =

∫
Φ2 (cn(x ,E∗i ),Σn(x ,E∗i ))+Φ2 (−cn(x ,E∗i ),Σn(x ,E∗i ))µ(dx)

with respect to ei where E∗i = {e∗1 , . . . , e∗i−1} ∪ {ei};

Algorithm B (Fast heuristic): sequential maximization of

ρn,E (x) = Φ2 (cn(x ,E ),Σn(x ,E )) + Φ2 (−cn(x ,E ),Σn(x ,E ))

with respect to x ;
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Quasi realizations for distance average variability

A.D. and Bect, J. and Chevalier, C. and Ginsbourger, D. (2016) Quantifying
uncertainties on excursion sets under a Gaussian random field prior. SIAM/ASA
J.Uncertainty Quantification, 4(1):850–874. hal-01103644v2.
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Test case: negative Branin-Hoo function

Quantity of interest: DTVΓ,N = 1
N

∑N
i=1‖d∗N(·)− d(·, Γi )‖2

2

Experimental set-up:

I 20 observation points;

I N = 10000 conditional simulations on a 50× 50 grid;

I K = 100 replications of each experiment.

Methods:

1. Full Monte Carlo simulations on the grid,

2. Simulations at optimized points (A,B) and interpolation on the
same grid.
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Test case: negative Branin-Hoo function

Method 1: Full grid simulations

I Variability:

Ê [DTVΓ,10000] = 7.2× 10−4(±4.71× 10−8);

V̂ar [DTVΓ,10000] = 2.22× 10−11(±3.14× 10−13);

I total computational cost: 10498 seconds.
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Test case: negative Branin-Hoo function

Method 2: quasi-realizations on 50× 50 grid.
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7e-04

10 20 50 75 100 120 150 175 2500
Number of simulation points (m)

D
T

V
(

, 
m

) type

Algorithm A

Algorithm B

Benchmark

Maximin LHS

Distributions of simulated distance transform variability

Total computing cost

I Algorithm A, m = 150:
11201 sec (10566 for
simulation point
optimization)

I Algorithm B, m = 150:
812 sec (250 for simulation
point optimization)

I LHS, m = 150: 691 sec

(Benchmark: 10498 sec)
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Vorob’ev quantiles

The coverage function pn : x → pn(x) = Pn(x ∈ Γ ) defines the family of
set estimates

Qρ = {x ∈ D : pn(x) ≥ ρ}

Coverage probability function

If ρ = ρ̃ we have Vorob’ev expectation

High values of ρ gives us sets with high
marginal probability of observing the set.
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A conservative estimate of Γ ∗ is

CΓ,n = Qρ∗ where ρ∗ ∈ arg max
ρ∈[0,1]

{µ(Qρ) : Pn(Qρ ⊂ {Zx ≤ t}) ≥ α}

Conservative estimate at 95%

Conservative estimate (95%)
0.95-level set
True excursion I joint confidence statement on the set

estimate;

I method introduced for Gauss Markov
random fields;

I expensive to compute otherwise.

Bolin, D. and Lindgren, F. (2015). Excursion and contour uncertainty regions for
latent Gaussian models. JRSS: B, 77(1):85-106.
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The computation of conservative estimates

The family of sets Qρ is nested, therefore we can obtain CΓ,n with a
dichotomy on the level ρ.

At each iteration of the dichotomy we need to compute

Pn(Qρ ⊂ {Zx ≤ t}) = Pn(Ze1 ≤ t, . . . ,Zek ≤ t),

where E = {e1, . . . , ek} is a the discretization of Qρ.

I randomized quasi Monte Carlo integration by Genz et al. :

(Fast, reliable, dimension dependent, available only k < 1000)

I standard Monte Carlo.

(dimension independent, many samples for low variance)
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A quasi Monte Carlo algorithm for orthant probabilities
Candidate ρ = 0.95

Pn(Qρ ⊂ {Zx ≤ t}) =

Pn(Ze1 ≤ t, . . . ,Zek ≤ t) =

1− Pn(maxx∈E Zx > t) = 1− p

Main idea: p = Pn(maxE Zx > t) = pq + (1− pq)Rq, where

pq = Pn(max
Eq

Zx > t)

Genz algorithm (QRSVN)

, Rq = Pn(max
E\Eq

Zx > t | max
Eq

Zx ≤ t)

Monte Carlo methods

.

dario.azzimonti@stat.unibe.ch Bayesian set estimation with GPs 34 / 43



Introduction
Expectations of random closed sets

Quasi-realizations for excursion sets estimation
Conservative estimates

Definition
Computational issues
GanMC method
Test case

A quasi Monte Carlo algorithm for orthant probabilities
Candidate ρ = 0.95

Pn(Qρ ⊂ {Zx ≤ t}) =

Pn(Ze1 ≤ t, . . . ,Zek ≤ t) =

1− Pn(maxx∈E Zx > t) = 1− p

Main idea: p = Pn(maxE Zx > t) = pq + (1− pq)Rq, where

pq = Pn(max
Eq

Zx > t)

Genz algorithm (QRSVN)

, Rq = Pn(max
E\Eq

Zx > t | max
Eq

Zx ≤ t)

Monte Carlo methods

.

p̂q = 0.47 R̂q = 0.42 ⇒ p̂ = 0.69
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Computation of the remainder

Rq = Pn(maxE\Eq
Zx > t | maxEq Zx ≤ t)

Standard Monte Carlo:

1. draw realizations zq1 , . . . , z
q
s from ZEq | maxEq Zx ≤ t;

2. for each zqi , draw a realization from ZE\Eq
| ZEq = zqi ;

3. Estimate Rq with RMC
q = 1

s

∑s
i=1 1max(ZE\Eq (ωi )|ZEq =zqi )>t

The cost of step 1 is higher than the cost of step 2.

At fixed computational budget we reduce the variance of RMC
q exploiting

this difference with asymmetric nested Monte Carlo.
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Computation of the remainder

At fixed computational budget we reduce the variance of RMC
q drawing

many realizations of ZE\Eq
| ZEq = zqi for each zi .
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0
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5

Standard marginal/conditional scheme
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Computation of the remainder

At fixed computational budget we reduce the variance of RMC
q drawing

many realizations of ZE\Eq
| ZEq = zqi for each zi .
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Asymmetric sampling scheme
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Computation of the remainder: asymmetric nested MC
Rq = Pn(maxE\Eq

Zx > t | maxEq Zx ≤ t)

1. draw realizations zq1 , . . . , z
q
s from ZEq | maxEq Zx ≤ t;

2. for each zqi , draw m∗ > 1 samples from ZE\Eq
| ZEq = zqi ;

3. RanMC
q = 1

s
1
m∗

∑s
i=1

∑m∗

j=1 1max(ZE\Eq (ωi,j )|ZEq =zqi )>t

var(RanMC
q ) is optimally reduced if: m∗ =

√
(α+c)B
β(A−B) ,

where A = var(1max(ZE\Eq |ZEq )>t), B = E
[
var(1max(ZE\Eq |ZEq )>t | maxEq Zx ≤ t)

]
and

α, β, c system dependent constants.

A D. and Ginsbourger D. (2016). Estimating orthant probabilities of high dimensional

Gaussian vectors with an application to set estimation. Submitted, hal-01289126
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Comparison with standard Monte Carlo

Conservative estimate at 95%

Conservative estimate (95%)
0.95-level set
True excursion

Full discretization: grid 100× 100

Time for equivalent estimates:

I Full MC: 1520 seconds;

I GMC: 200 seconds;

I GanMC: 136 seconds.
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The IRSN test case
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Test case:

I keff function of PuO2 density and
H2O thickness, D = [0.2, 5.2]× [0, 5];

I n = 20 observations (LHS design);

I Γ ∗ = {x ∈ D : keff(x) ≤ t}, t = 0.92

GRF model

I constant prior mean,
Matérn (ν = 5/2) covariance;

I MLE for parameters.

Acknowledgements: Yann Richet, Institut de Radioprotection et de Sûreté Nucleaire.
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Conservative Estimate
True excursion
coverage function

Discretization on grid 50× 50.

Conservative estimate at 95%;

Candidate sets dimension between
1659 and 2084;

Volume of conservative estimate:
17.36 (true volume 22.0). Sequential
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Conclusion

I GP can be used for uncertainty quantification on sets;

I different types of estimates, depending on the final objective;

I Optimal quasi-realizations for excursion sets lower the
computational cost of quantities based on set realizations;

I Conservative estimates:

I sequential strategies to reduce uncertainty;

I GanMC: benchmark study with other algorithms;

I Currently developing R package ConservativeEstimates.

Thanks for your attention!
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How to reduce the uncertainty on the estimate?

Stepwise uncertainty reduction: find a sequence of evaluation points
X1,X2, . . . that optimally reduces the expected uncertainty on the future
estimate, i.e. given an initial design Xn, select

Xn+1 ∈ arg min
xn+1∈D

En[Hn+1 | Xn+1 = xn+1]

Uncertainty function(s): many possible definitions, here

Hsymm
n+1 = En+1[µ(Γ∆Qρn+1 )], Γ∆Qρn+1 = Γ \ Qρn+1 ∪ Qρn+1 \ Γ

see [Bect et al. (2012), Chevalier et al. (2014)] and references therein for
different definitions of Hn+1.

dario.azzimonti@stat.unibe.ch Bayesian set estimation with GPs 43 / 43



How to reduce the uncertainty on the estimate?

Criterion: Jsymm
n+q (xq) = En[En+q[µ(Γ \ CΓ,n)] | Xn+q = xq],
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Sequential strategies
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Conservative Estimate
True excursion
coverage function

n = 75 new evaluations;

next evaluation chosen in order
to minimize the future expected
volume of the set difference
Γ \ Qρ∗ ;

Volume of updated CE: 20.72
(true excursion: 22.0,
old estimate: 17.36) Back

Joint work with: David Ginsbourger, Clément Chevalier, Julien Bect, Yann Richet.
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More comparisons anMC/MC
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Efficiency of pGMC and pGanMC

Benchmark: 6d GRF, discretization: 1000 Sobol’ points, k Matérn
(ν = 5/2) with θ = [0.5, 0.5, 1, 1, 0.5, 0.5]T and σ2 = 8, m constant.
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More comparisons anMC/MC
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Benchmark: 6d GRF, discretization: 1000 Sobol’ points, k Matérn
(ν = 5/2) with θ = [0.5, 0.5, 1, 1, 0.5, 0.5]T and σ2 = 8, m constant,
t = 5.
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