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We assume we are interested in a function f : Rd → R with d ≥ 2.

We want to get some understanding on the “structure” of f :
What is the effect of each input variables on the output ?
Do some variables have more influence than other ?
Do some variables interact together ?

The talk will be illustrated on the following test function :

f : [0, 1]6 → R

x 7→ 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5
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First thing one can do is to plot the output versus each input.
For 100 samples uniformly distributed over [0, 1]6 we get :
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In a similar fashion, we can fix all variables except one. In graph
bellow, all non plotted variables are set to 0.5.
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In order to get an insight on the interaction between variables, we
can look at the influence of changing the reference value.
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One common tool for analysing the structure of f is to look at its
FANOVA representation :

f (x) = f0 +
d∑

i=1
fi (xi ) +

∑
i<j

fi ,j(xi , xj) + · · ·+ f1,...,d (x)

This decomposition is such that :
f0 accounts for the constant term
⇒ all fI are zero mean (I 6= 0)

f1 accounts for all signal that can be explained just by x1

⇒
∫

fI(x)dx−1 = 0 for all I /∈ {0, 1}

⇒
∫

fI(x)dx1 = 0 for all I ⊃ 1

In other words, this decomposition is such that all terms are
orthogonal in L2.
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The expressions of the fI are :

f0 =
∫

f (x)dx

fi (xi ) =
∫

f (x)dx−i − f0

fi ,j(xi , xj) =
∫

f (x)dx−ij − fi (xi )− fj(xj) + f0

It can also be interesting to look at the total effect of some inputs :

f̃1(x1) =
∫

f (x)dx−1

f̃1,2(x1, x2) =
∫

f (x)dx−{1,2}
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On the previous example we obtain :
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We can also look at 2nd order interactions

f1,2(x1, x2) f1,3(x1, x3)

Interaction x1, x2 Interaction x1, x3
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The total effect of (x1, x2) is thus

f̃1,2(x1, x2) = f0 + f1(x1) + f2(x2) + f1,2(x1, x2)
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In practical application f is not analytical so the above method
require numerical computations of the integrals. If there is a cost
associated with the evaluation of f , surrogate models are useful.

Some models are naturally easy to interpret, for example

m(x) = β0 + β1x1 + β2x2

but it soon becomes more tricky.

m(x) = β0 + β1x1 + β2x2 + β1,2x1x2
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In GPR, the mean can be seen either as a linear combination of
the observations : m(x) = αtF
the kernel evaluated at X : m(x) = k(x ,X )β

For example, we have for a squared exponential kernel
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The basis function have a local influence which makes the
interpretation difficult.
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The principle of polynomial chaos is to project f onto a basis of
orthonormal polynomials.

One dimension
For x ∈ R, the hi are of order i . Starting from the constant
function h0 = 1, the following ones can be obtain using
Gram-Schmidt orthogonalisation.

h0(x) = 1
||1|| , h1(x) = x − 〈x , h0〉h0

||x − 〈x , h0〉h0||
, h2(x) = x2 − 〈x , h0〉h0 − 〈x , h1〉h1

||x2 − 〈x , h0〉h0 − 〈x , h1〉h1||

d-dimension
In Rd , the basis is obtained by a tensor product of one dimensional
basis. For example, if d = 2 :

h00(x) = 1× 1
h10(x) = h1(x1)× 1
h01(x) = 1× h1(x2)

h11(x) = h1(x1)× h1(x2)
h20(x) = h2(x1)× 1

... =
...
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The orthonormal basis H depends on the measure over the input
space D.

A uniform measure over D = [−1, 1] gives the Legendre basis :

h0(x) = 1/2
h1(x) = 3/2 x
h2(x) = 5/4 (3x2 − 1)

h3(x) = 7/4 (5x3 − 3x)
h4(x) = 9/16 (35x4 − 30x2 + 3)

... =
...

A standard Gaussian measure over R gives the Hermite basis :

h0(x) = 1/
√
2π

h1(x) = 1/
√
2π x

h2(x) = 1/(2
√
2π) (x2 − 1)

h3(x) = 1/(6
√
2π) (x3 − 3x)

h4(x) = 1/(24
√
2π) (x4 − 6x2 + 3)

... =
...

GPSS workshop on UQ GPs for sensitivity analysis 17 / 43



Introduction FANOVA Pol. Chaos GPR Sensitivity Analysis Conclusion

Legendre basis in 1D
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Legendre basis in 2D
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If we consider linear regression model based on polynomial chaos
basis functions

m(x) =
∑

I⊂{0,...p}
βhI(x)

the FANOVA representation of m is straightforward. For example
in 2D :

m0 =
∫∫

m(x)dx1dx2 =
∫
β00h00(x)dx1dx2 = β00

m1(x1) =
∫

m(x)dx2 −m0

=
∫
β00h00(x) + β10h10(x) + β20h20(x)dx2 −m0

= β10h10(x1) + β20h20(x1)
m1,2(x) = ... = β11h11(x) + β12h12(x) + β21h21(x) + β22h22(x)
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We obtain on the motivating example :
-6

-4
-2

0
2

4
6

x1 x2 x3

0.0 0.2 0.4 0.6 0.8 1.0

-6
-4

-2
0

2
4

6

x4

0.0 0.2 0.4 0.6 0.8 1.0

x5

0.0 0.2 0.4 0.6 0.8 1.0

x6

GPSS workshop on UQ GPs for sensitivity analysis 21 / 43



Introduction FANOVA Pol. Chaos GPR Sensitivity Analysis Conclusion

Same figure without cheating :
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A first idea is to consider ANOVA kernels [Stitson 97] :

k(x, y) =
d∏

i=1
(1 + ki (xi , yi ))

= 1 +
d∑

i=1
ki (xi , yi )︸ ︷︷ ︸

additive part

+
∑
i<j

ki (xi , yi )kj(xj , yj)︸ ︷︷ ︸
2nd order interactions

+ · · ·+
d∏

i=1
ki (xi , yi )︸ ︷︷ ︸

full interaction

The associated GP is

Z (x) = Z0︸︷︷︸
cst

+
d∑

i=1
Zi (xi )︸ ︷︷ ︸

additive part

+
∑
i<j

Zi,j(xi , xj)︸ ︷︷ ︸
2nd order interactions

+ · · ·+ Z1...d (x)︸ ︷︷ ︸
full interaction

However, the ZI do not satisfy
∫

ZI(x)dxi = 0.
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If we build a GPR model based on this kernel, we obtain :

m(x) = k(x ,X )k(X ,X )−1F

m(x) =
(
1 +

d∑
i=1

ki (xi , yi ) +
∑
i<j

ki (xi , yi )kj(xj , yj)
)

k(X ,X )−1F

= 1tk(X ,X )−1F +
d∑

i=1
k(xi ,Xi )k(X ,X )−1F︸ ︷︷ ︸

mi (xi )

+
∑
i<j

ki (xi ,Xi )k(xj ,Xj)k(X ,X )−1F︸ ︷︷ ︸
mi,j (xi ,xj )

+ . . .

As previously, the mI do not satisfy
∫

mI(x)dxi = 0.
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samples with zero integrals
We are interested in building a GP such that the integral of the
samples are exactly zero...

Let’s consider the associated conditional GP :

Z0
law= Z

∣∣ ∫ Z (s)ds=0

Let µ0(x) = E
(
Z (x)

∣∣ ∫ Z (s)ds=0
)
denote the conditional

expectation and k0(x , x ′) = cov
(
Z (x),Z (x ′)

∣∣ ∫ Z (s)ds=0
)

µ0(x) =
∫

k(x , s)ds
(∫∫

k(s, t)dsdt
)−1

0

k0(x , y) = k(x , x ′)−
∫

k(x , s)ds
(∫∫

k(s, t)dsdt
)−1 ∫

k(x , s)ds
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Samples from Z0 have the required property

µ0(x) = 0 k0(x , y) = k(x , y)−

∫
k(x , s)ds

∫
k(y , s)ds∫∫

k(s, t)dsdt
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These 1-dimensional kernels are of great importance to create
ANOVA kernels dedicated to sensitivity analysis :

kSA(x, y) =
d∏

i=1
(1 + k0(xi , yi ))

= 1 +
d∑

i=1
k(xi , yi )︸ ︷︷ ︸

additive part

+
∑
i<j

k(xi , yi )k(xj , yj)︸ ︷︷ ︸
2nd order interactions

+ · · ·+
d∏

i=1
k(xi , yi )︸ ︷︷ ︸

full interaction

The associated GP naturally writes

ZSA(x) = Z0︸︷︷︸
cst

+
d∑

i=1
Zi (xi )︸ ︷︷ ︸

additive part

+
∑
i<j

Zi,j(xi , xj)︸ ︷︷ ︸
2nd order interactions

+ · · ·+ Z1...d (x)︸ ︷︷ ︸
full interaction

Now, the ZI do satisfy
∫

ZI(x)dxi = 0.
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We get the following decomposition of samples
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Furthermore, the GPR model inherits this properties

2D example

k(x, y) =
2∏

i=1
(1 + k0(xi , yi ))

= 1 + k0(x1, y1) + k0(x2, y2) + k0(x1, y1)k0(x2, y2)

The mean writes

m(x) = (1 + k0(x1,X1) + k0(x2,X2) + k0(x1,X1)k0(x2,X2))tk(X ,X )−1F
= m0 + m1(x1) + m2(x2) + m12(x)

These terms correspond to the FANOVA representation of m.
The sub-models are conditional expectations :

mI(x) = E (ZI(x)|Z (X )=F )

We can thus associate a predictive covariance to each sub-model !
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We obtain on the motivating example :
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We obtain on the motivating example :

GPSS workshop on UQ GPs for sensitivity analysis 32 / 43



Introduction FANOVA Pol. Chaos GPR Sensitivity Analysis Conclusion

Introduction

FANOVA, ie HDMR, ie Sobol-Hoeffding representation

Polynomial Chaos

Gaussian process Regression

Sensitivity Analysis

Conclusion

GPSS workshop on UQ GPs for sensitivity analysis 33 / 43



Introduction FANOVA Pol. Chaos GPR Sensitivity Analysis Conclusion

The principle of sensitivity analysis is to quantify how much each
input or group of inputs has an influence on the output :

local sensitivity analysis
global sensitivity analysis

Probabilistic framework has proven to be very interesting :

If we introduce randomness in the inputs,
how random is the output ?

Hereafter, we focus on variance based global sensitivity analysis
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Let X be the random vector representing our uncertainty on the
inputs. We assume its probability distribution factorises (i.e. the Xi
are independents) :

µ(x) = µ(x1)× µ(x2)× · · · × µ(xn)

This factorization of µ allows to use it in the FANOVA

representation of f :

f (x) = f0 +
d∑

i=1
fi (xi ) +

∑
i<j

fi ,j(xi , xj) + · · ·+ f1,...,d (x)

in this expression, the fI are orthogonal for µ.

We know plug X into this expression :

f (X ) = f0 +
d∑

i=1
fi (Xi ) +

∑
i<j

fi ,j(Xi ,Xj) + · · ·+ f1,...,d (X )

and we get interesting results...
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The fI(XI) are centred and independent

E (fI(XI)) =
∫

fI(xI)dµ(x) = 0 (for I 6= 0)

cov (fI(XI), fJ(XJ)) = E (fI(XI)fJ(XJ)) =
∫

fI(xI)fJ(xJ)dµ(x) = 0

As a consequence, we get

var (f (X )) =
d∑

i=1
var (fi (Xi ))+

∑
i<j

var (fi ,j(Xi ,Xj))+· · ·+var (f1,...,d (X ))

The Sobol indices are defined as

SI = var (fI(XI))
var (f (X ))

These indices are in [0, 1], and their sum is 1.
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In practice, these indices can be computed using Monte Carlo
methods.
⇒ This requires lots of observations

Another approach is to use surrogate models. If the model is well
chosen, computational cost is almost free !

Polynomial Chaos
GPR with ksa kernels
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Polynomial Chaos

In the case of polynomial Chaos, Sobol indices are given by the
squares of the β coefficients

Di = VarX [EX (H(X )β|Xi )] = VarX [Hi (Xi )βi ] = β2
i

Si = Di∑
k Dk

For mode details, see the work from Bruno Sudret
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GPR with ksa kernel

The sensitivity indices can be obtained analytically :

SI = var (mI(XI))
var (m(X ))

= F T K−1 (
⊙

i∈I Γi ) K−1F
F T K−1

(⊙d
i=1 (1n×n + Γi )− 1n×n

)
K−1F

where Γi is the matrix Γi =
∫

Di
k0

i (si )k0
i (si )T dsi , and � is an

entry-wise product.
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The computation of Sobol indices on the mean gives :

S1 S2 S3 S4 S5 S6 S12
model 1 0.20 0.20 0.09 0.35 0.09 0.00 0.07
model 2 0.20 0.20 0.08 0.37 0.09 0.00 0.05
truth 0.20 0.20 0.09 0.35 0.09 0.00 0.07

For this test-function 50 observations are enough !
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Sensitivity analysis
There are interesting tools to get an insight of what’s
happening inside high dimensional functions
The effective dimensionality can be much smaller
Monte Carlo or model based approach

Some modelling tips
What is the purpose of the model ?
GPR models are not necessarily black-box...
It is possible to include fancy observations in GPR (integrals,
derivatives, ...)

This talk unfortunately focused on sensitivity analysis on the
mean... the proper way is to perform SA on the conditional sample
paths. See work from Marrel, Iooss et Al, SAMO 2007.
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Using appropriate kernels, the computation of Sobol indices on the
samples gives :

Di = VarX [EX (Z (X )|Xi )] = VarX [Zi (Xi )]

We can easily sample from this distribution

D1 prior

S1
0 1 2 3 4

D2 prior

S2
0 1 2 3 4

D12 prior

S12
0 1 2 3 4

Similarly, we can sample from the posterior to get an uncertainty
measure on the indices.

GPSS workshop on UQ GPs for sensitivity analysis 43 / 43


	Introduction
	FANOVA, ie HDMR, ie Sobol-Hoeffding representation
	Polynomial Chaos
	Gaussian process Regression
	Sensitivity Analysis
	Conclusion

