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Robust optimization
. . . outline

▸ basics about greedy optimizers
▸ GD and SGD: (stochastic) gradient descent

▸ robust stochastic optimization
▸ example: step size adaptation
▸ extending line searches
▸ robust search directions
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Typical scheme
. . . greedy and gradient based optimizer

x∗ = arg min
x

L(x)

xi+1 ← xi − αisi

1. si – which direction? → model objective function locally

2. αi – how far? → prevent blow ups and stagnation

3. repeat

▸ needs to work for many different L(x)
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The steepest way downhill
. . . gradient descend finds local minimum

x∗ = arg min
x

L(x)

xi+1 ← xi − α∇L(xi), α = const.
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. . . gradient descend finds local minimum
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Additional difficulty
.. noisy functions by mini-batching x∗ = arg minx L(x)

sometimes we do not know −∇L(xi) precisely!
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Additional difficulty
.. noisy functions by mini-batching x∗ = arg minx L(x)

L(x) ∶= 1

M

M

∑
i=1

`(x, yi) ≈
1

m

m

∑
j=1

`(x, yj) =∶ L̂(x), m≪M

▸ compute only smaller sum over m
▸ hope that L̂(x) approximates L(x) well
▸ smaller m means higher noise on ∇L(x)

for iid. mini-batches, noise is approximately Gaussian

L(x) = L̂(x) + ε, ε ∼ N (0,O (M −m
m

))

L̂(x) ∼
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The steepest way downhill
. . . in expectation: SGD finds local minimum, too.

x∗ = arg min
x

L(x)

xi+1 ← xi − α∇̂L(xi), α = const.
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Step size adaptation
... by line searches

xi+1 ← xi − αisi

so far α was constant and hand-chosen!

▸ line searches automatically choose step sizes
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Line searches
automated learning rate adaptation x∗ = arg minx L(x)

xi+1 ← xi − αi∇L(xi)

set scalar step size αi given direction −∇L(xi)
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Line searches break in stochastic setting!
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Line searches
automated learning rate adaptation x∗ = arg minx L(x)

xi+1 ← xi − αi∇L(xi)

set scalar step size αi given noisy direction −∇L̂(xi)
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Line searches break in stochastic setting!
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Step size adaptation
... by line searches

xi+1 ← xi − αisi

▸ line searches automatically choose step sizes
▸ very fast subroutines called in each optimization step
▸ control blow up or stagnation

▸ they do not work in stochastic optimization problems!

small outline
▸ introduce classic (noise free) line searches
▸ translate concept to language of probability
▸ get a new algorithm robust to noise
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Classic line searches
Initial evaluation ≡ current position of optimizer x∗ = arg minx f(x), xi+1 ← xi − tsi+1
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(
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Wolfe conditions: accept when [Wolfe, SIAM Review, 1969]

f(t) ≤ f(0) + c1tf ′(0) (W-I) f ′(t) ≥ c2f ′(0) (W-IIa)

∣f ′(t)∣ ≤ c2∣f ′(0)∣ (W-IIb)
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Classic line searches
Search: candidate # 1 x∗ = arg minx f(x), xi+1 ← xi − tsi+1
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Classic line searches
Collapse search space x∗ = arg minx f(x), xi+1 ← xi − tsi+1
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Classic line searches
Search: candidate # 2 x∗ = arg minx f(x), xi+1 ← xi − tsi+1
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Classic line searches
Search: candidate # 3 x∗ = arg minx f(x), xi+1 ← xi − tsi+1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−2

0

2

4

interpolation→
(local minimum)

distance t in line search direction

df
(
t)

5.5

6

6.5

f
(
t)

Wolfe conditions: accept when [Wolfe, SIAM Review, 1969]

f(t) ≤ f(0) + c1tf ′(0) (W-I) f ′(t) ≥ c2f ′(0) (W-IIa)

∣f ′(t)∣ ≤ c2∣f ′(0)∣ (W-IIb)

10 ,



Classic line searches
Accept: datapoint # 3 fulfills Wolfe conditions x∗ = arg minx f(x), xi+1 ← xi − tsi+1
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Classic line searches
Choosing meaningful step-sizes, at very low overhead

many classic line searches

1. model the 1D objective with cubic spline

2. search candidate points by collapsing search space

3. accept if Wolfe conditions fulfilled

Classic line searches break in stochastic optimization problems!

extending the line search paradigm:

1. model: cubic spline GP surrogate

2. search: Bayesian optimization for exploration

3. accept: probabilistic Wolfe termination conditions
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Classic line searches
Fail in the presence of noise.

many classic line searches

1. model the 1D objective with cubic spline

2. search candidate points by collapsing search space

3. accept if Wolfe conditions fulfilled

Classic line searches break in stochastic optimization problems!

extending the line search paradigm:

1. model: cubic spline GP surrogate

2. search: Bayesian optimization for exploration

3. accept: probabilistic Wolfe termination conditions
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Classic line searches
designing a probabilistic line search

many classic line searches

1. model the 1D objective with cubic spline

2. search candidate points by collapsing search space

3. accept if Wolfe conditions fulfilled

Classic line searches break in stochastic optimization problems!

extending the line search paradigm:

1. model: cubic spline GP surrogate

2. search: Bayesian optimization for exploration

3. accept: probabilistic Wolfe termination conditions
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Building a probabilistic line search
Step 1: cubic spline GP surrogate, Step 2: BO for exploration

1. model: cubic spline GP (integrated Wiener process)

p(f) = GP(f,0;k), k(t, t′) = [ 1
3

min3(t, t′) + 1
2
∣t − t′∣min2(t, t′)]

▸ robust and flexible
▸ has analytic minima (root of quadratic equation)

2. search: Bayesian optimization (expected improvement)

uEI(t) = Ep(ft ∣y,y′)[min{0, η − f(t)}] [Jones et al., 1998]

▸ only evaluated at few candidate points:
▸ analytic minima of posterior mean
▸ one extrapolation point

12 ,



Building a probabilistic line search
Step 1: cubic spline GP surrogate, Step 2: BO for exploration

1. model: cubic spline GP (integrated Wiener process)

p(f) = GP(f,0;k), k(t, t′) = [ 1
3

min3(t, t′) + 1
2
∣t − t′∣min2(t, t′)]

▸ robust and flexible
▸ has analytic minima (root of quadratic equation)

2. search: Bayesian optimization (expected improvement)

uEI(t) = Ep(ft ∣y,y′)[min{0, η − f(t)}] [Jones et al., 1998]

▸ only evaluated at few candidate points:
▸ analytic minima of posterior mean
▸ one extrapolation point

12 ,



Building a probabilistic line search
Step 3: probabilistic Wolfe termination conditions

3. accept: probabilistic Wolfe termination conditions:
▸ Wolfe conditions are positivity constraints on two variables at, bt

f(t) ≤ f(0) + c1tf ′(0) (W-I) and f ′(t) ≥ c2f
′(0) (W-II)

[at

bt
] = [1 c1t −1 0

0 −c2 0 1
]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f(0)
f ′(0)
f(t)
f ′(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0.

▸ GP on f implies, at each t, a bivariate Gaussian distribution:

p(at, bt) = N ([at

bt
] ; [m

a
t

mb
t
] , [C

aa
t Cab

t

Cba
t Cbb

t
])

probability for weak Wolfe conditions : pWolfe
t = p(0 ≤ at ∧ 0 ≤ bt)

approximate strong conditions : pWolfe
t = p(0 ≤ at ∧ 0 ≤ bt≤ b̄)
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Probabilistic line search routine
Initial belief: first evaluation ≡ current position of optimizer
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Probabilistic line search routine
Search: candidate # 1
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Probabilistic line search routine
Accept: Check pWolfe for first datapoint
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Probabilistic line search routine
Search: candidate # 2
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Probabilistic line search routine
Accept: check pWolfe for datapoints # 1 and # 2
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Probabilistic line search routine
Search: candidates # 3
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Probabilistic line search routine
Search: candidates # 3 (discriminate through EI)
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Probabilistic line search routine
Accept: check pWolfe for datapoints # 1, # 2 and # 3
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small summary
. . . probabilistic line searches

make new from old:

1. model cubic spline → GP with cubic spline means

2. search collapsing search space → Bayesian optimization

3. accept binary Wolfe conditions → probabilistic Wolfe conditions

→ lightweight inner optimization routine
→ robust stochastic optimization
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Line search finds learning rates
SGD on 2-layer neural net: mini-batch size: 10
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small summary
... about line searches and others

take away
▸ optimizer are learning machines
▸ data: noisy gradient
▸ prior encodes structure of the objective
▸ prob. line search: infers approximate minimum

there is more
▸ the field is much broader than ’only’ line searches
▸ search directions can also be learned
▸ classic search directions are MAP estimator of Gaussian inference
▸ robust second order search directions are still needed!

17 ,



small summary
... about line searches and others

take away
▸ optimizer are learning machines
▸ data: noisy gradient
▸ prior encodes structure of the objective
▸ prob. line search: infers approximate minimum

there is more
▸ the field is much broader than ’only’ line searches
▸ search directions can also be learned
▸ classic search directions are MAP estimator of Gaussian inference
▸ robust second order search directions are still needed!

17 ,



Probabilistic line searches
... in Tensorflow

We implement in:

Have a beer with Lukas!

Thank you!
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