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Uncertainty Quantification (UQ)

@ Statistical problems associated with use of complex
mathematical /mechanistic/‘computer’ models

@ An active area of research in the Statistics community since the 1980s
o Design and Analysis of Computer Experiments
o Bayesian Analysis of Computer Code Outputs

@ More recent interest from the Applied Maths community

@ Many analyses involve the use of Gaussian processes
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Computer models

@ Computer model: function f with inputs z and outputs y

y = f(x).

Refer to computer model as a simulator

f usually not available in closed form.

f constructed from modeller's understanding of the process.
o There may be no physical input-output data.

f may be deterministic.

Computer experiment: evaluating f at difference choices of x
o A ‘simulator run': evaluating f at a single choice of x.
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Example: rainfall run-off simulator
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Example: finite element modelling

step 1010

@ simulator of machining of a
metal

@ Inputs: tool parameters, cutting
parameters and material
properties

@ Outputs: forces and
temperatures at various
locations
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Not concerned with (purely) statistical models
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Uncertainty in simulator inputs

@ Simulator may be set up to accept ‘controllable’ inputs only.

@ But there may be other parameters/coefficients/variables ‘hard-wired’
within the simulator.

@ We define the input z to include these other numerical values used to
calculate the outputs.

@ Suppose that there is a true input value, X, with at least some
elements of X uncertain.

What is our uncertainty about Y = f(X)?
We quantify uncertainty about X with a probability distribution px
Then need to obtain the distribution py.

Can propagate uncertainty using Monte Carlo: sample X1,..., Xy
from px and evaluate f(X1),..., f(Xn)

e What do we do if f is computationally expensive?(Gaussian processes!)
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Probabilistic sensitivity analysis of simulator outputs

o Interested in Y = f(X), where X is uncertain with (known)
distribution px.

@ Sensitivity analysis: which elements in X = {X,..., X3} are most
responsible for the uncertainty in Y = f(X)?

o Write X = (X;,X_;). Consider ‘importance’ of X; via

Varx {Ex_(Y]X;)}

@ The expected reduction in variance if value of Xj is learnt, because

Var(Y) = VarXi{EX% YX:)}+ EXi{VarXﬂ_ YX:)}

@ Can speed up computation with Gaussian processes...
@ ...but (sometimes) other methods are better!
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Variance-based sensitivity analysis

— px; (21) — Px, (22)
—E(Y|X1 :SL‘l) _E(Y‘XQ 21’2)
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Need to think carefully about input distributions

Consider
f(x) = exp(—x),
with Y = f(X) and
X ~ UJ0,b].

In this case we have

b—2+4dexp(—b) — (b+2)exp(—2b
Var(y) (=)= 0+ Dexp(2)

Increasing b increases the variance of X but decreases the variance of Y
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Example!: modelling Rotavirus

@ Simulator developed by GlaxoSmithKline. Predicts incidence of
rotavirus in a population before and after a vaccine is administered to
a proportion of the infant population

@ Deterministic compartmental model, 672 compartments (16 disease
stages x 42 age classes)

@ Inputs include transmission rates between age groups, reduction in risk
following each infection

e Outputs: time series of rotavirus incidence for six age groups following
vaccination programme

e GSK analysis investigated sensitivity of output to 9 inputs, using 8200
simulator runs

o We consider sensitivity of output to 20 inputs, using 340 simulator
runs

IMUCM case study: analysis by John Paul Gosling, Hugo Maruri-Aguilar, Alexis
Boukouvalas
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Variance based sensitivity analysis

Analysis for an individual output: no. of infections in 2-3 age group after 2
years
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Decision-theoretic sensitivity analysis
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Decision-theoretic sensitivity analysis
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A quick plug

Thursday morning: workshop on sensitivity analysis
Theory, computation, brief intro to eliciting input distributions
Practical using R

But no Gaussian processes!

Jeremy Oakley (Sheffield) Computer Models September 2016 16 / 49



Calibration/ inverse problems

Example problem from Kennedy and O'Hagan (2001)

@ A Gaussian plume deposition simulator f(Zcont, Tcarin) predicts
deposition of radionuclides at a location x o, following release of
unknown concentration X, from point source

@ Measurements of the true deposition z(Z.ont) at a limited number of
locations x.on: available.

@ Aim: to predict deposition at other locations using both data and
simulator.

@ What value of z4;, do we use?

@ And what happens if the simulator is wrong?
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Calibrating an imperfect simulator

@ Wish to estimate X q = ¢:
acceleration due to Earth's
gravity

@ | drop a tennis ball from my
office window at height zcont,
and time its descent to the
ground

o Estimate g via

t = V2Tcontg

@ Will have error in measurements,
so take replicates

@ The more measurements | take,
the more certain | become about
the wrong value
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The calibration model

e Kennedy and O'Hagan (2001)

Z(xcont,i) = pf(xcont,ia Xcalib) + 5($cont,i) + €
d(Zcont,i) is the discrepancy (bias) between simulator output and
reality.

@ § modelled as a Gaussian process
@ Doesn't always go down well with modellers!

“I'm horrified! You should be improving your models with
better physics!”

@ Accounting for simulator discrepancy important, otherwise

e can become certain about a ‘wrong’ input value
e simulator predictions can be spuriously precise
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Calibration inputs

z($cont,i> = pf(xcont,ia Xcalib) + 6(xcont,i) + &

e Two types of input
o Observable: has true value, independent of the simulator
e Tuning input: artefact of the simulator. ‘Best value’ rather than ‘true
value’
o Kennedy & O’Hagan model good for interpolating physical
observations...

@ ...but problems if aim is to learn true values of ‘observable’ calibration
inputs or extrapolate, even if allowance for simulator discrepancy ¢
Brynjarsdottir, J. and O'Hagan, A. (2014). Learning about physical
parameters: The importance of simulator discrepancy. Inverse Problems,
30.
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Calibration via history matching

@ The calibration problem again: try to find  such that f(x) is ‘close’
to observation z

@ Emphasis now on discarding region of input space where the simulator
can't fit the data

@ For computationally expensive simulator, will use Gaussian process
emulator for f

@ Assess the “implausibility” of an input value z via

[z = E{f(2)}]] '
[Var{f(z)} + Var(e) + Var(s)]'/?

I(z) =

@ For multiple outputs, can consider maximum implausibility for each
output
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History matching: toy example

Output f(x)
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Case study?: HIV in Uganda

@ “Mukwano”: a dynamic, stochastic, individual based model that
simulates sexual partnerships and HIV transmission

@ Births, deaths, partnership formation and dissolution and HIV
transmission were modelled using time-dependent rates

@ 22 inputs, e.g. proportions of men and women in “high sexual activity”
groups, transition probability of HIV per sex act during primary stage
of infection

o Calibration data were collected from a rural general population cohort
in South-West Uganda. The cohort was established in 1989 and
currently consists of the residents of 25 villages

e History matching iterated through 10 waves, 200-500 simulator runs
per wave

2|. Andrianakis, I. Vernon, N. McCreesh, T.J. McKinley, J.O., R. Nsubuga, M.
Goldstein and R.G. White
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Simulator runs after history matching

Female HIV prevalence
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Part 2: Gaussian processes for computer models

@ Lots of interest in the UQ community, dating back to Sacks et al.
(1989)

@ GPs use to “emulate” computationally expensive simulators y = f(x).

@ The simulators f are often deterministic

@ Emphasis on ‘small data’
e Motivation for using a GP is that we cannot obtain many simulator runs
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Emulators

e Want f(x1),..., f(zn), but only know f(z1),..., f(xy,), for
n << N.
o Could estimate f given f(x1),..., f(zn)
e but can we quantify uncertainty in the estimate?
@ A statistical inference problem:
e Treat f as an uncertain function
o Derive a probability distribution for f given f(x1),..., f(z,) (an
“emulator”)
o Distribution represents a subjective judgement; there is no ‘true’
distribution for f.
@ Popular choice of distribution for f: Gaussian process
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Probability distributions for functions
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Probability distributions for functions

Multivariate normal distribution Z ~ Ny(m, V)

23
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Probability distributions for functions

Gaussian process

Infinite set of random variables (e.g. f(x1), f(z2),...) with the property
that any finite subset have a multivariate normal distribution

\

-4 -2 0 XiX2 2 4 -3 -2 -1 0 1 2 3
X f(Xl)
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Modelling a function as a Gaussian process

Argument alert!

@ This treatment of GPs will appear to be different!
e “The mean function”

@ It isn't really!

@ Bear with me...
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Modelling a function as a Gaussian process

We write
f(x) =m(z) + Z(x)

@ m(.): the mean function - a parametric function of z, e.g.
m(x) = Z Bix,

B; uncertain (but can be integrated out of joint posterior analytically).
e Z(.) a zero mean Gaussian process

e Gaussian assumption is for the deviation of f(z) from m(z).
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f(2) = m(x) + Z(a)

@ Specify Z(.) by its covariance function, eg

Cov{f(z:), f(x;)} = 0% exp {‘ <$ ; xjf}

e o2 determines how far the f(z) deviates from m(x).

@ ¢ describes how ‘wiggly’ the function looks
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Covariance function parameters
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Equivalent ways to parameterise a GP

@ Consider, for scalar input =z,

f(z) = 2B+ Z(x)

with Blo? ~ N(0,v0?) (with v chosen), and Z(x) a zero mean GP as

before.
@ Then
E[f(x)] =0
and
Cov(f(x1), f(x2)]0?,0) = vo w12 + oPcy(a1, 2) (1)

o If we specify a zero mean GP with covariance function (1), for fixed v,
model is equivalent to the hierarchical GP with the mean function z5.
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@ For the most common modelling choices, GPs with “mean functions”
can be re-written as zero-mean GPs with a modified covariance kernel

@ Which way you write the GP isn't important...

@ ...but choice of mean function/covariance kernel is!

Jeremy Oakley (Sheffield) Computer Models September 2016 36 / 49



Suppose we have

E{f(z)} =m(z) = 1+u,
Cov{f(z;), f(zj)} = exp{_ <x10.53) }
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Why we like Gaussian processes for modelling functions
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e We have observed f(x1),..., f(x,)
e We want to know f(x,41),..., f(zN)
@ Define

y=(f(@1), s f@n), f@nsr)s- o flan)T = (i, ys)7.

Represent uncertainty about f(.) using a GP, so
Yy~ NN (ma V)
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‘Easy’ to predict (and quantify uncertainty about) y, having observed y;.
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Example: 18 input climate simulator, 255 simulator runs

Emulator means and 95% intervals

emulator prediction
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simulator output
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Emulators: the benefits

@ simulator user runs the simulator as often as possible to get

f(@1)s. s fan)

e n will be small if f is computationally expensive

e Emulator allows us to predict f(zp+1), f(zn+2),... at any other
inputs, and quantify joint uncertainty in predictions, almost
instantaneously

@ Makes analyses requiring many simulator runs feasible, even if n
relatively small
o Can derive other useful quantities (almost) for free:

o We have an uncertain, true input X with probability distribution px ()
o Define Y = f(X). Want to know

M = B(Y|f) = /X F(@)px (@)da

o With Gaussian process emulator, M has a normal distribution, can
derive expressions for mean and variance of M
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The emulator does not replace the simulator

@ In a computer experiment, may want to know f(z1),..., f(xn), but
can only observe f(x1),..., f(zy), with n < N.

@ As part of the analysis, we work with
p{f(@nt1),---, f@n)|f(x1),..., f(zn)}, which we get from the
emulator.

o If the simulator has given us the value of f(x), the emulator will give

us the same value

f(x)

0 4 6 g 9
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Choice of mean function

(or things to think about when choosing your covariance kernel)

f(x) = m(z) + Z(z)

@ Can be important if training data set small; gaps between points can
be large.

o If extrapolating, emulator predictions will ‘revert’ to m(z)
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Choice of mean function

f(x) = m(z) + Z(x)

@ Usually choose simple linear form. If z = (z1,...,24),

m(x) = Bo + Prx1 + ... + Baza.

@ Can treat fy,..., 84 as uncertain, and integrate out of posterior
@ Some claim m(x) = 5y constant form works better...

@ ...others claim better to include higher order polynomial terms
(quadratics, interactions)

@ For multi level simulator case, fast simulator can be used as a prior
mean for the slow simulator

@ Using a second GP (with noise) for the mean can help deal with
nonstationarity (Ba and Joseph, 2012)
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Estimating the correlation function parameters

For vector input = = (x1,...,2q).
>2}

/

A _ Li — Ty

c(x,z") —exp{ Z( 5
i=1

@ Maximum likelihood probably most popular: the main computational

burden

@ Some authors do ‘full Bayes' using MCMC

o Can integrate out o2 analytically, but not &;

@ Others fix the correlation parameters, and include more polynomial
terms in the mean

@ Importance sampling:
Nagy, B., Loeppky, J. L. and Welch, W. J. (2007). Fast Bayesian
inference for Gaussian process models.
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Initial Gibbs sampler can be helpful for starting an optimiser. Example: 18
input climate simulator

log likelihood
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o UQ: lots of interesting statistical problems in the use of deterministic
computer models

e Propagating uncertainty
e Sensitivity analysis for identifying ‘important’ inputs
o Calibration/history matching/inverse problems

@ Modelling ‘simulator discrepancy’ perhaps the most important
challenge

@ Gaussian processes popular for dealing with computationally expensive
models

@ Often used with small datasets - diagnostics important
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