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We have seen during the introduction lectures that the distribution of a
GP Z depends on two functions:

the mean m(.)

the covariance k(., .)

In this talk, we will focus on the covariance function:

k(x , y) = cov (Z (x),Z (y))
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Introduction

We will first recall some definitions

Gaussian process
A random process Z indexed by D is said to be Gaussian iif
(Z (x1), . . . ,Z (xn)) is a Gaussian vector ∀xi ∈ D, ∀n ∈ N

Gaussian vector

A d-dimensional random vector Y is said to be Gaussian iif atY is
Gaussian ∀a ∈ Rd
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Introduction

Same definitions with images:
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Introduction GP regression

We assume we have observed a function f for a limited number of time
points x1, . . . , xn:
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The observations are denoted by fi = f (xi) (or F = f (X )).
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Introduction GP regression

Since f in unknown, we make the general assumption that it is to the
sample path of a Gaussian process Y :
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Y is characterised by its covariance function.
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Introduction GP regression

We can look at the sample paths of Y that interpolate the data points:
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Introduction GP regression

The conditional distribution is still Gaussian. It has mean and variance

m(x) = E (Y (x)|Y (X )=F ) = k(x ,X )k(X ,X )−1F

v(x) = var (Y (x)|Y (X )=F ) = k(x , x)− k(x ,X )tk(X ,X )−1k(x ,X )

It can be represented as a mean function with confidence intervals.
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Introduction GP regression

Changing the kernel has a huge impact on the model:

exponentiated quadratic kernel
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Introduction GP regression

This is because changing the kernel implies changing the prior

exponentiated quadratic kernel
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What is a kernel? Kernels and positive definite functions

Let Z be a random process with kernel k . Some properties of kernels
can be obtained directly from their definition.

Example
k(x , x) = cov (Z (x),Z (x)) = var (Z (x)) ≥ 0

⇒ k(x , x) is positive.

k(x , y) = cov (Z (x),Z (y)) = cov (Z (y),Z (x)) = k(y , x)

⇒ k(x , y) is symmetric.

We can obtain a thinner result...
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What is a kernel? Kernels and positive definite functions

We introduce the random variable T =
∑n

i=1 aiZ (xi) where n, ai and xi
are arbitrary.

Computing the variance of T gives:

var (T ) =
∑∑

aiajcov
(
Z (xi),Z (xj)

)
=
∑∑

aiajk(xi , xj)

We thus have: ∑∑
aiajk(xi , xj) ≥ 0

Definition
The functions satisfying the above inequality for all n ∈ N, for all
xi ∈ D, for all ai ∈ R are called positive semi-definite functions.

We have not assumed here that Z is Gaussian!
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What is a kernel? Kernels and positive definite functions

If k is stationary (ie k(x , y) = k̃(|x − y |)) psd implies further results:

Properties

If k̃ is n times differentiable in 0, then it is n times differentiable
everywhere.
The maximum value of k̃(t) is reached in t = 0.

Example
The following functions are not valid covariance structures

t

K(t)

t

K(t)

t

K(t)
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What is a kernel? Kernels and positive definite functions

We have seen:

k is a covariance⇒ k is a positive semi-definite function

The reverse is also true:

Theorem (Loeve)
k corresponds to the covariance of a GP

m
k is a (symmetric) positive definite function

Positive semi definiteness is also a key concept in functional analysis
leading to the theory of Reproducing Kernel Hilbert Spaces (RKHS).
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What is a kernel? A few words on RKHS

A symmetric positive semi-definite function is also the reproducing
kernel of a RKHS:

Definition
H is a RKHS with reproducing kernel k if it is a Hilbert space such that:

for all x , k(x , .) ∈ H
for all f ∈ H, 〈f (.), k(x , .)〉 = f (x)

Given a kernel k , the associated RKHS is the completion of{
n∑

i=1

aik(xi , .);n ∈ N,ai ∈ R, xi ∈ D

}

for the inner product〈
n∑

i=1

aik(xi , .),
m∑

i=1

bik(xi , .)

〉
=

n∑
i=1

m∑
j=1

aibjk(xi , xj)
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What is a kernel? A few words on RKHS

Given some observations, the best predictor is defined as the
interpolator with minimal norm:

m = argmin
h∈H

{||h||H,h(xi)=f (xi)}

H 0

f

{h ∈ H st h(Xi) = 0}

span(k(X, .))

Subspace of interpolating

m

functions
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What is a kernel? A few words on RKHS

Given some observations, the best predictor is defined as the
interpolator with minimal norm:

m = argmin
h∈H

{||h||H,h(xi)=f (xi)} = · · · = k(x ,X )k(X ,X )−1Y

The expression is the same as the conditional expectation of the GP!

k m

H

Z
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What is a kernel? Usual kernels

In order to build m we can consider any off the shelf kernel:

white noise: k(x , y) = δx ,y

bias: k(x , y) = 1

exponential: k(x , y) = exp (−|x − y |)
Brownian: k(x , y) = min(x , y)

Gaussian: k(x , y) = exp
(
−(x − y)2)

Matérn 3/2: k(x , y) = (1 + |x − y |)× exp (−|x − y |)

sinc: k(x , y) = sin(|x − y |)
|x − y |

...

Most of the above kernels are stationary.
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What is a kernel? Usual kernels
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Kernels and positive measures Bochner’s theorem

Theorem (Bochner)

A continuous stationary function k(x , y) = k̃(|x − y |) is positive definite
if and only if k̃ is the Fourier transform of a finite positive measure:

k̃(t) =
∫
R

e−iωtdµ(ω)

This result is very useful to prove the positive definiteness of stationary
functions.
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Kernels and positive measures Examples on usual kernels

Example

We consider the following measure:

Its Fourier transform gives k̃(t) =
sin(t)

t
:

0.0

0.0

As a consequence, k(x , y) =
sin(x − y)

x − y
is a valid covariance function.
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Kernels and positive measures Examples on usual kernels

Bochner theorem can be used to prove the positive definiteness of
many usual stationary kernels

The Gaussian is the Fourier transform of itself
⇒ it is psd.

Matern kernels are the Fourier transforms of 1
(1+ω2)p

⇒ they are psd.
the constant function is the Fourier transform of δx ,y

⇒ it is psd.

It can also be generalised to distributions:

δx ,y is the Fourier transform of the constant function
⇒ it is psd.
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Kernels and positive measures Spectral approximation

Spectral approximation with a mixture of Gaussian (A. Wilson,
ICML 2013)

The inverse Fourier transform of a (symmetrised) non centred
Gaussian is:

µ(ω)

0.0

−→
F

k̃(t)

0.0

This can be generalised to a measure based on the sum of Gaussians.
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Kernels and positive measures Spectral approximation

Spectral approximation with a mixture of Gaussian (A. Wilson,
ICML 2013)

We obtain a kernel that is parametrised by the means and the
bandwidths of Gaussians bells in the measure space:

µ(ω)

0.0

−→
F

k̃(t)

0.0
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Kernels and positive measures Spectral approximation

Spectral approximation with a mixture of Gaussian (A. Wilson,
ICML 2013)

The sample paths have the following aspect:
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Making new from old

We have seen that it is difficult to prove directly the positive
semi-definiteness of a function.

For all n ∈ N, for all xi ∈ D, for all ai ∈ R∑∑
aiajK (xi , xj) ≥ 0

However, many operations can be applied to a psd function while
retaining this property. This is often called making new from old.
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Making new from old

Making new from old:

Kernels can be:
Summed together

On the same space k(x , y) = k1(x , y) + k2(x , y)
On the tensor space k(x,y) = k1(x1, y1) + k2(x2, y2)

Multiplied together
On the same space k(x , y) = k1(x , y)× k2(x , y)
On the tensor space k(x,y) = k1(x1, y1)× k2(x2, y2)

Composed with a function
k(x , y) = k1(f (x), f (y))

All these operations will preserve the positive definiteness.

How can this be useful?
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Making new from old Sum of kernels

Sum of kernels over the same space

Example (The Mauna Loa observatory dataset)
This famous dataset compiles the monthly CO2 concentration in
Hawaii since 1958.

1960 1970 1980 1990 2000 2010 2020 2030
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Let’s try to predict the concentration for the next 20 years.
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Making new from old Sum of kernels

Sum of kernels over the same space

We first consider a squared-exponential kernel:

k(x , y) = σ2 exp
(
−(x − y)2

θ2

)

1950 1960 1970 1980 1990 2000 2010 2020 2030 2040600

400

200

0

200

400

600

1950 1960 1970 1980 1990 2000 2010 2020 2030 2040300

320

340
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400

420
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480

The results are terrible!
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Making new from old Sum of kernels

Sum of kernels over the same space

What happen if we sum both kernels?

k(x , y) = krbf1(x , y) + krbf2(x , y)

1950 1960 1970 1980 1990 2000 2010 2020 2030 2040300
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The model is drastically improved!
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Making new from old Sum of kernels

Sum of kernels over the same space

We can try the following kernel:

k(x , y) = σ2
0x2y2 + krbf1(x , y) + krbf2(x , y) + kper (x , y)
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320

340

360

380

400

420

440

460

Once again, the model is significantly improved.
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Making new from old Sum of kernels

Sum of kernels over tensor space [Durrande 2012]

Property

k(x,y) = k1(x1, y1) + k2(x2, y2) (1)

is valid covariance structure.
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Remark:
From a GP point of view, k is the kernel of Z (x) = Z1(x1) + Z2(x2)
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Making new from old Sum of kernels

Sum of kernels over tensor space

We can have a look at a few sample paths from Z :
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⇒ They are additive (up to a modification)

Tensor Additive kernels are very useful for
Approximating additive functions
Building models over high dimensional inputs spaces
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Making new from old Sum of kernels

Sum of kernels over tensor space

We consider the test function f (x) = sin(4πx1) + cos(4πx2) + 2x2 and
a set of 20 observation in [0,1]2

Test function
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Making new from old Sum of kernels

Sum of kernels over tensor space

We obtain the following models:

Gaussian kernel

Mean predictor
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RMSE is 1.06

Additive Gaussian kernel

Mean predictor
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RMSE is 0.12
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Making new from old Sum of kernels

Sum of kernels over tensor space

Remark
It is straightforward to show that the mean predictor is additive

m(x) = (k1(x1) + k2(x2))
t(K1 + K2)

−1Y

= k1(x1)
t(K1 + K2)

−1Y︸ ︷︷ ︸
m1(x1)

+k2(x2)
t(K1 + K2)

−1Y︸ ︷︷ ︸
m2(x2)

⇒ The mean predictor shares the prior behaviour.
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Making new from old Sum of kernels

Sum of kernels over tensor space

Remark
The prediction variance has interesting features

pred. var. with kernel product
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Making new from old Sum of kernels

Sum of kernels over tensor space

This property can be used to construct a design of experiment that
covers the space with only cst × d points.
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Making new from old Product of kernels

Product over the same space

Property

k(x , y) = k1(x , y)× k2(x , y)

is valid covariance structure.

Example
We consider the product of a squared exponential with a cosine:

× =

GP Winter School (Sheffield 2014) Kernel Design N. Durrande 43 / 74



Making new from old Product of kernels

Product over the tensor space

Property

k(x,y) = k1(x1, y1)× k2(x2, y2)

is valid covariance structure.

Example
We multiply 2 squared exponential kernel
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Calculation shows we obtain the usual 2D squared exponential kernel.
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Making new from old Composition with a function

Composition with a function

Property
Let k1 be a kernel over D1 × D1 and f be an arbitrary function D → D1,
then

k(x , y) = k1(f (x), f (y))

is a kernel over D × D.
proof ∑∑

aiajk(xi , xj) =
∑∑

aiajk1(f (xi)︸︷︷︸
yi

, f (xj)︸︷︷︸
yj

) ≥ 0

Remarks:
k corresponds to the covariance of Z (x) = Z1(f (x))
This can be seen as a (nonlinear) rescaling of the input space
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Making new from old Composition with a function

Example

We consider f (x) = 1
x and a Matérn 3/2 kernel

k1(x , y) = (1 + |x − y |)e−|x−y |.

We obtain:

Kernel
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Making new from old Composition with a function

All these transformations can be combined!

Example
k(x , y) = f (x)f (y)k1(x , y) is a valid kernel.

This can be illustrated with f (x) = 1
x and k1(x , y) = (1+ |x − y |)e−|x−y |:
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Effect of a linear operator

Effect of a linear operator

Property
Let L be a linear operator that commutes with the covariance, then
k(x , y) = Lx(Ly (k1(x , y))) is a kernel.

Example
We want to approximate a function [0,1]→ R that is symmetric with
respect to 0.5. We will consider 2 linear operators:

L1 : f (x)→
{

f (x) x < 0.5
f (1− x) x ≥ 0.5

L2 : f (x)→ f (x) + f (1− x)
2

.
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Effect of a linear operator

Effect of a linear operator: example [Ginsbourger 2013]

Examples of associated sample paths are

k1 = L1(L1(k))
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k2 = L2(L2(k))
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The differentiability is not always respected!
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Effect of a linear operator

Effect of a linear operator

These linear operator are projections onto a space of symmetric
functions:

H

Hsym

f

L1f
L2f

Is there an optimal projection?

⇒ This can be difficult... but it raises interesting questions!
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Effect of a linear operator Application to sensitivity analysis

Sensitivity analysis

The analysis of the influence of the various variables of a
d-dimensional function f is often based on the HDMR:

f (x) = f0 +
d∑

i=1

fi(xi) +
∑
i<j

fi,j(xi , xj) + · · ·+ f1,...,d(x)

where
∫

f (xI)dxi = 0 if i ∈ I.

The expressions of the fI are:

f0 =

∫
f (x)dx

fi(xi) =

∫
f (x)dx−i − f0

fi,j(xi , xj) =

∫
f (x)dx−ij − fi(xi)− fj(xj) + f0
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Effect of a linear operator Application to sensitivity analysis

Can we obtain a similar decomposition for the model?

A first idea is to consider ANOVA kernels [Stitson 97]:

k(x,y) =
d∏

i=1

(1 + k(xi , yi))

= 1 +
d∑

i=1

k(xi , yi)︸ ︷︷ ︸
additive part

+
∑
i<j

k(xi , yi)k(xj , yj)︸ ︷︷ ︸
2nd order interactions

+ · · ·+
d∏

i=1

k(xi , yi)︸ ︷︷ ︸
full interaction
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Effect of a linear operator Application to sensitivity analysis

A decomposition of the best predictor is naturally associated to those
kernels.

Example: we have in 2D k = 1 + k1 + k2 + k1k2 so the best predictor
can be written as

m(x) = (1 + k(x1) + k(x2) + k(x1)k(x2))
tK−1F

= m0 + m1(x1) + m2(x2) + m12(x)

This decomposition looks like the ANOVA representation of m but the

mI do not satisfy ∫
Di

mI(xI)dxi = 0

We need to build a kernel k0 such that
∫

k0(x , y)dx = 0 for all y .
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Effect of a linear operator Application to sensitivity analysis

We showed in [Durrande 2013] that the subspace of zero-mean
functions can be obtained using the RKHS framework.

h ∈ H0 ⇔
∫

h(x)dx = 0
H0

H

The integral operator is linear, and it is bounded if
∫

k(x , x)dx <∞.
⇒We apply Riesz theorem. Let R be the representer.

h ∈ H0 ⇔
∫

h(x)dx = 0⇔ 〈h,R〉 = 0

GP Winter School (Sheffield 2014) Kernel Design N. Durrande 55 / 74



Effect of a linear operator Application to sensitivity analysis

Calculations give directly

R(x) = 〈R, k(x , .)〉 =
∫

D
k(x , s)ds

L(h) = h − 〈R, k(x , .)〉
||R||2H

R

k0(x , y) = k(x , y)−

∫
k(x , s)ds

∫
k(y , s)ds∫∫

k(s, t)dsdt
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Effect of a linear operator Application to sensitivity analysis

Let us consider the random test function f : [0, 1]10 → R :

x 7→ 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 +N (0,1)

The steps for approximating f with GPR are:
1 Learn f on a DoE (here LHS maximin with 180 points)
2 get the optimal values for the kernel parameters using MLE,
3 build the kriging predictor m based on

∏
(1 + k0)

As m is a function of 10 variables, the model can not easily be
represented: it is usually considered as a “blackbox”. However, the
structure of the kernel allows to split m in sub-models.
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Effect of a linear operator Application to sensitivity analysis

The univariate sub-models are:

(
we had f (x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 +N (0, 1)

)
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Effect of a linear operator Periodicity detection

We will now discuss the detection of periodicity [Durrande 2013]

Given a few observations can we extract the periodic part of a signal ?
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Effect of a linear operator Periodicity detection

As previously we will build an orthogonal decomposition of the RKHS:

H = Hp +Ha

where Hp is the subspace of H spanned by the Fourier basis
B(t) = (sin(t), cos(t), . . . , sin(nt), cos(nt))t .

Property
The reproducing kernel of Hp is

kp(x , y) = B(x)tG−1B(y)

where G is the Gram matrix associated to B.

GP Winter School (Sheffield 2014) Kernel Design N. Durrande 60 / 74



Effect of a linear operator Periodicity detection

We can deduce the following decomposition of the kernel:

k(x , y) = kp(x , y) + k(x , y)− kp(x , y)︸ ︷︷ ︸
ka(x,y)

Property: Decomposition of the model

The decomposition of the kernel gives directly

m(t) = (kp(t) + ka(t))t(Kp + Ka)
−1F

= kp(t)t(Kp + Ka)
−1F︸ ︷︷ ︸

periodic sub-model mp

+ ka(t)t(Kp + Ka)
−1F︸ ︷︷ ︸

aperiodic sub-model ma

and we can associate a prediction variance to the sub-models:

vp(t) = kp(t , t)− kp(t)t(Kp + Ka)
−1kp(t)

va(t) = ka(t , t)− ka(t)t(Kp + Ka)
−1ka(t)
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Effect of a linear operator Periodicity detection

Example
For the observations shown previously we obtain:
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Can we can do better?
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Effect of a linear operator Periodicity detection

Previously, the kernels were parametrised by 2 variables:

k(x , y , σ2, θ)

but writing k as a sum allows to tune independently the parameters of
the sub-kernels.

Let k∗ be defined as

k∗(x , y , σ2
p, σ

2
a, θp, θa) = kp(x , y , σ2

p, θp) + ka(x , y , σ2
a, θa)

Furthermore, we include a 5th parameter in k∗ accounting for the
period by changing the Fourier basis:

Bω(t) = (sin(ωt), cos(ωt), . . . , sin(nωt), cos(nωt))t
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Effect of a linear operator Periodicity detection

MLE of the 5 parameters of k∗ gives:
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We will now illustrate the use of these kernels for gene expression
analysis.
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Effect of a linear operator Periodicity detection

The 24 hour cycle of days can be observed in the oscillations of many
physiological processes of living beings.

Examples
Body temperature, jet lag, sleep, ... but also observed for plants,
micro-organisms, etc.

This phenomenon is called the circadian rhythm and the mechanism
driving this cycle is the circadian clock.

To understand how the circadian clock operates at the gene level,
biologist look at the temporal evolution of gene expression.
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Effect of a linear operator Periodicity detection

The aim of gene expression is to measure the activity of genes:
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Effect of a linear operator Periodicity detection

The mRNA concentration is measured with microarray experiments

The chip is then scanned to determine the occupation of each cell and
reveal the concentration of mRNA.
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Effect of a linear operator Periodicity detection

Experiments to study the circadian clock are typically:
1 Expose the organism to a 12h light / 12h dark cycle
2 at t=0, transfer to constant light
3 perform a microarray experiment every 4 hours to measure gene

expression

Regulators of the circadian clock are often rhythmically regulated.
⇒ identifying periodically expressed genes gives an insight on the

overall mechanism.
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Effect of a linear operator Periodicity detection

We used data from Edward 2006, based on arabidopsis.

The dimension of the data is:

22810 genes
13 time points

Edward 2006 gives a list of the 3504 most periodically expressed
genes. The comparison with our approach gives:

21767 genes with the same label (2461 per. and 19306 non-per.)
1043 genes with different labels
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Effect of a linear operator Periodicity detection

Let’s look at genes with different labels:
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Conclusion

Small recap
We have seen that

Kernels have a huge impact on the model
They have to reflect the prior belief on the function to approximate.
Kernels can (and should) be tailored to the problem at hand.

Although a direct proof of the positive definiteness of a function is often
intractable, Bochner theorem allows to build kernels from their power
spectrum.
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Conclusion

Various operations can be applied to kernels while keeping the psd :

Making new from old

sum
product

composition with a function

Linear operator
If we have a linear application that transforms any function into a
function satisfying the desired property, it is possible to build a GP
fulfilling the requirements.
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Conclusion
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