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Computer models

Computer model represented by function

y = f(x).

f usually not available in closed form.

f constructed from modeller’s understanding of the process.
A ‘substantive’ or ‘law-driven’ model rather than an
empirical/statistical model.
There may be no physical ‘(x, y) data’.

f may be deterministic.
Computer experiment: evaluating f at difference choices of x

A ‘model run’: evaluating f at a single choice of x.
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Things we want to do with computer models

1 Optimisation: finding input values to produce desired output values

2 Calibration/inverse problems: finding input values so that output
values match observed data

3 Uncertainty propagation. Suppose there is a true, uncertain input X.
What is the distribution of Y = f(X)?

4 (Global) sensitivity analysis. Continuing (3), if X = (X1, . . . , Xd),
how do elements of X contribute to uncertainty in Y ?

New(ish) buzzword: “Uncertainty Quantification” (UQ)
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Gaussian processes for computer models

Computer models can be computationally expensive: takes long time
to calculate f(x) for a single x.

Given limited model runs y1 = f(x1), . . . , yn = f(xn), wish to know
y = f(x) for many other x values
You’ll have seen by now that GPs are good for this sort of thing!
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Gaussian processes for computer models
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Computer experiments: some considerations

f is often deterministic
Usually working with/aiming for small training datasets
Can choose the training inputs: experimental design problem
Can sometimes work with ‘multi-level’ computer models, eg, a fast
and coarse model and a slow and accurate model of the same system
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Past and current research

First(?) use of a Gaussian process for a computer model:
Sacks, J., Welch, W.J., Mitchell, T.J. and Wynn, H.P. (1989) Design
and analysis of computer experiments. Statistical Science, 4, 409-435.

Bayesian version:
Currin, C., Mitchell, T., Morris, M. and Ylvisaker, D. (1991). Bayesian
prediction of deterministic functions, with applications to the design
and analysis of computer experiments Journal of the American
Statistical Association, 86, 953-963.
GPs for optimisation:
Jones, D.R., Schonlau, M. and Welch, W. J. (1998). Efficient Global
Optimization of Expensive Black-Box Functions, Journal of Global
Optimization, 13, 455-492.
The MUCM community and toolkit
www.mucm.ac.uk
www.mucm.ac.uk/toolkit
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Gaussian process emulators

Various different names for the same thing: surrogate models,
response surface models, meta-models, emulators
Emulator: a probability distribution for the function f
Need more than an estimate; need to quantify uncertainty, as sample
of training data may be small
Naturally handled within a Bayesian framework; no ‘true’ distribution
for f . We treat f as an uncertain function.
Emulator does not replace the model; arguably the term is redundant

In a computer experiment, may want to know f(x1), . . . , f(xN ), but
can only observe f(x1), . . . , f(xn), with n < N .
As part of the analysis, we work with
p{f(xn+1), . . . , f(xN )|f(x1), . . . , f(xn)}, which we get from the
emulator.
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GP emulator modelling choices

Convention is to specify the GP model hierarchically, with separate
mean and covariance functions.

f(x) = h(x)Tβ + Z(x)

h(x)Tβ: the mean function, eg, for scalar x, could have

h(x)Tβ = β0 + β1x.

Z(.): a zero-mean GP (usually stationary), sometimes called the
residual process
Can think of the role of Z(.) as ‘improving’ a parametric model
One aim of the mean function is to ensure stationary GP is adequate
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Have
E[Z(x)] = 0

and
Cov(Z(x), Z(x′)|σ2, θ) = σ2cθ(x, x

′)

with, eg, for x = (x1, . . . , xd)

c(x, x′) = exp

{
−

d∑
i=1

(
xi − x′i
θi

)2
}

Commonly assume

p(β, σ2) ∝ 1

σ2

Given training data (and θ), posterior distribution of f is a t-process
(β and σ2 integrated out of posterior analytically)
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Equivalent ways to parameterise a GP

Consider, for scalar input x,

f(x) = xβ + Z(x)

with β|σ2 ∼ N(0, vσ2) (with v chosen), and Z(x) a zero mean GP as
before.
Then

E[f(x)] = 0

and
Cov(f(x1), f(x2)|σ2, θ) = vσ2x1x2 + σ2cθ(x1, x2) (1)

If we specify a zero mean GP with covariance function (1), for fixed v,
model is equivalent to the hierarchical GP with the mean function xβ.
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Choice of mean function

Can be important if training data set small; gaps between points can
be large.
Usually choose simple linear form. If x = (x1, . . . , xd),

h(x)Tβ = β0 + β1x1 + . . .+ βdxd.

Some claim h(x)Tβ = β0 constant form works better...
...others claim better to include higher order polynomial terms
(quadratics, interactions)
For multi level model case, fast model can be used as a prior mean for
the slow model
Using a second GP (with noise) for the mean can help deal with
nonstationarity:
Ba, S. and Joseph, R. V. (2012). Composite Gaussian process models
for emulating expensive functions. The Annals of Applied Statistics 6,
1838-1860
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Estimating the correlation function parameters

x = (x1, . . . , xd).

c(x, x′) = exp

{
−

d∑
i=1

(
xi − x′i
θi

)2
}

Maximum likelihood probably most popular
Some authors do ‘full Bayes’ using MCMC
Others fix the correlation parameters, and include more polynomial
terms in the mean
Importance sampling:
Nagy, B., Loeppky, J. L. and Welch, W. J. (2007). Fast Bayesian
inference for Gaussian process models.
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Initial Gibbs sampler can be helpful for starting an optimiser. Example: 18
input climate model

0 200 400 600 800 1000

-3
90

-3
80

-3
70

-3
60

-3
50

-3
40

-3
30

iteration

lo
g 

lik
el

ih
oo

d

14 / 43



Experimental design

Often find some inputs uninfluential; product designs can be wasteful
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popular
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Experimental design

Sobol’ sequences also space-filling. Easier for sequential design, but some
projections poor.
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Uncertainty propagation

Suppose that there is a true, uncertain value of the input X
We specify a probability distribution for X

What is our uncertainty about Y = f(X)?
We consider inference for the uncertainty distribution p(Y |f), itself
uncertain. (Distinct from p(Y )).
Example:

Suppose X ∼ N(0, 1), and either f(x) = 1 + x, or f(x) = x2 (we
don’t know which).
If f(x) = 1 + x, then Y = f(X)|f has the N(1, 1) distribution
If f(x) = x2, then Y = f(X)|f has the χ2

1 distribution
As f is uncertain, distribution of Y |f is uncertain

By considering uncertainty about p(Y |f), we can consider how
inferences might change given more model runs
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Consider inference for the uncertain mean

E(Y |f) =
∫
f(x)pX(x)dx,

Normally distributed if f is a GP (O’Hagan, A. (1991) Bayes-Hermite
quadrature).
Can get closed form expression for mean and variance of E(Y |f) if

Multivariate normal distribution for X
Exponentiated quadratic covariance function
Mean function polynomial in X

Haylock, R. G. and O’Hagan, A. (1996). On inference for outputs of
computationally expensive algorithms with uncertainty on the inputs, in
Bayesian Statistics 5, edited by Bernardo, J. M., Berger, J. O., Dawid, A.
P. and Smith, A. F. M., pp. 629-637, Oxford: University Press.
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Exploring the uncertainty distribution with emulators:
example

Oakley, J. (2004). Estimating percentiles of computer code outputs.
Journal of the Royal Statistical Society, Series C, 53, 83-93.

During storms, excess sewage can spill over into rivers and streams
A model y = f(x) (the SIMPOL model) estimates storage volume y
required to meet certain environmental standards.
Uncertainty in true input values X induces uncertainty in the output
Y = f(X); WRc wish to know the 95th percentile of Y |f
Can we estimate this percentile efficiently based on a small number of
model runs?
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A sequential approach

1 Run the model a small number times, fit emulator to get distribution of
f

2 Simulate approximate realisations of f . For each realisation, use Monte
Carlo to estimate 95th percentile, noting the input value.

3 From (2), identify region of input space R that produces large output
values

4 Run original more times, concentrating input choices in R
5 Update the emulator to reduce uncertainty about f in input region of

interest

SIMPOL test example, 4 uncertain inputs, 16 runs used for step 1, 8
runs used for step 3.
Comparison with large Monte Carlo samples.
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Diagnostics and validation

Bastos, L. S. and O’Hagan, A. (2009). Diagnostics for Gaussian process
emulators. Technometrics 51, 425-438.

Motivating example:
We have a model y = f(x), and wish to consider uncertainty in
Y = f(X), for uncertain X with distribution G
Monte Carlo approach: sample x1, . . . , xN from G, evaluate
y1 = f(x1), . . . , yn = f(xN ) to obtain sample from Y .
Can use Monte Carlo sample to estimate E(Y |f), P (Y ≤ y|f) etc.,
with ‘reliable’ associated standard errors for large N .
Model user limited to small number of runs, so do uncertainty analysis
with an emulator.
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y1 = f(x1), . . . , yn = f(xN ) to obtain sample from Y .
Can use Monte Carlo sample to estimate E(Y |f), P (Y ≤ y|f) etc.,
with ‘reliable’ associated standard errors for large N .
Model user limited to small number of runs, so do uncertainty analysis
with an emulator.
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Diagnostics and validation: motivating example

Suppose emulator provides estimate Ê(Y |f) = 50, with 95% credible
interval (48,52) and P̂ (Y < 70|f) = 0.8, with 95% credible interval
(0.77,0.83)

Intervals show how estimates might change given further runs of the
model
Can we really be 95% sure E(Y |f) lies in (48,52)?
Will depend on whether GP emulator is an ‘appropriate’ statistical
model of the computer model f .
Overconfident predictions may lead to poor decisions
Underconfident predictions may devalue the computer model analysis
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interval (48,52) and P̂ (Y < 70|f) = 0.8, with 95% credible interval
(0.77,0.83)
Intervals show how estimates might change given further runs of the
model

Can we really be 95% sure E(Y |f) lies in (48,52)?
Will depend on whether GP emulator is an ‘appropriate’ statistical
model of the computer model f .
Overconfident predictions may lead to poor decisions
Underconfident predictions may devalue the computer model analysis

23 / 43



Diagnostics and validation: motivating example

Suppose emulator provides estimate Ê(Y |f) = 50, with 95% credible
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Poorly performing emulators
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Traditional approach: leave one out CV

Remove each data point in turn, predict using remaining training data

Plot prediction (emulator mean), with error bars, against true value
Plot standardised prediction errors against predicted values
Useful, can identify a bad emulator, but

ignores correlation in prediction errors
hard to judge if uncertainty in emulator is ‘appropriate’
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The diagnostic strategy

Run simulator to obtain training data y.
Build emulator given the training data.
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The diagnostic strategy

Select second set validation inputs.
Determine emulator predictions and uncertainty at these inputs.
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The diagnostic strategy

Run simulator to obtain validation data y∗.
Observe emulator prediction errors, relative to emulator uncertainty.
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Diagnostics with the validation data (1)

Can combine prediction errors into a single measure of fit using a
Mahalanobis distance

DMD(y
∗) = {y∗ − E(y∗|y)}TV ar(y∗|y)−1{y∗ − E(y∗|y)},

How do we know if prediction errors are too large or too small?

The Mahalanobis distance diagnostic
If GP emulator is ‘correct’, DMD(y

∗) has an F distribution, so compare
observed DMD(y

∗) with this distribution to test hypothesis of a ‘good’
emulator.
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Diagnostics with the validation data (2)

Prediction errors in the validation data are correlated
Transform errors using a ‘pivoted Cholesky decomposition’ of V ar(y∗|y).

This gives us
Sequence of independent errors, each approx N(0, 1) for a ‘correct’
emulator
Early points in sequence correspond to most uncertain validation
points - how does emulator behave in regions ‘distant’ to the training
data?
Latter points in sequence correspond to validation points close to
training data, or other validation points - are we describing the
‘smoothness’ of the simulator appropriately?
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The pivoted Cholesky decomposition diagnostic
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Example: 18 input climate model, constant mean function
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Example: 18 input climate model, linear mean function
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Sensitivity analysis of model outputs

Local sensitivity analysis: calculating partial derivatives of f
Global or probabilistic sensitivity analysis: which elements in
X = {X1, . . . , Xd} are most responsible for the uncertainty in
Y = f(X)?
Variance based approach: investigate how inputs contribute to
V ar(Y ) (given f).

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., J.Cariboni, Gatelli, D.,
Saisana, M. and Tarantola, S. (2008). Global Sensitivity Analysis: The
Primer, New York: Wiley.
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Variance-based global sensitivity analysis

Main effect variance:
V arXi{E(Y |Xi)}

The expected reduction in variance if value of Xi is learnt, because

V arXi{E(Y |Xi)} = V ar(Y )− EXi{V ar(Y |Xi)}

If inputs independent, can decompose V ar(Y ) into ‘main effect’
variances and ‘interaction’ variances, similar to ANOVA.
Depends on specification of p(X).
Can measure input importance in different ways, eg decision-theoretic
approaches.
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Main effect plots and variances
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Computation with emulators

Bayesian quadrature again. Now want

E(Y |Xi, f) =

∫
f(x−i, Xi)pX−i(x−i|Xi)dx−i,

Again, normally distributed with GP model for f . Can obtain mean and
variance analytically for certain GP modelling choices and normally
distributed inputs.

Oakley, J. E. and O’Hagan, A. (2004). Probabilistic sensitivity of complex
models: a Bayesian approach, J. Roy. Statist. Soc. Ser. B, 66: 751-769.
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Variance-based SA for an epidemic model

Acknowledgement: JP Gosling and others. See www.mucm.ac.uk/toolkit
Case Study 1
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Calibration and inverse problems

Kennedy, M. and O’Hagan, A. (2001). Bayesian calibration of computer
models (with discussion). Journal of the Royal Statistical Society, Series B.
63, 425-464.
Example.

A Gaussian plume deposition model f(x, θ) predicts deposition of
radionuclides at a location x following release of concentration θ from
point source. θ is unknown.
Measurements of the true deposition z(x) at a limited number of
locations x available.
Aim: to predict deposition at other locations using both data and
model.
What value of θ do we use?
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The calibration model

z(xi) = ρf(xi, θ) + δ(xi) + εi

δ(xi) is the discrepancy (bias) between model output and reality.
Modelled with another GP.

Need discrepancy
1 to quantify uncertainty properly;
2 to learn about a ‘true’ θ

But hard to specify; prior is important
Doesn’t always go down well with modellers!

“I’m horrified! You should be improving your models with
better physics!”
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History matching

Emphasis on ruling out ‘implausible’ regions of input space, prior to
calibration

1 Start with training runs D1 = {y1 = f(x1), . . . , yn = f(xn)} over
some design region

2 Fit emulator to the training data
3 (Conservatively), discard implausible regions: regions where the best

observed fit is ‘poor’
May still be fairly uncertain about f at this stage, given D1 only

4 Get second training set D2 = {yn+1 = f(xn+1), . . . , yn = f(xn+m)}
over the ‘plausible’ design region

5 Now discard further implausible regions, with improved information
about f where it is needed

6 Iterate as necessary
I Vernon, M Goldstein and R G Bower (2010), "Galaxy Formation: A
Bayesian Uncertainty Analysis", Bayesian Analysis 05(04): 619–670 (with
discussion)
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History matching: oil reservoir simulator

Acknowledgement: JP Gosling and others. See www.mucm.ac.uk/toolkit
Case Study 3

42 / 43



And finally...

If you like Sheffield, and you like GPs:

Uncertainty in Computer Models 2014
Sheffield
July 28-30

www.mucm.ac.uk/UCM2014.html

Abstract submissions for talks and posters welcome
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