Introduction to Gaussian Processes

Neil D. Lawrence

GPWS 13th January 2013





#### Rasmussen and Williams (2006)



The Gaussian Density

Covariance from Basis Functions

**Basis Function Representations** 



#### The Gaussian Density

**Covariance from Basis Functions** 

**Basis Function Representations** 

Perhaps the most common probability density.

$$p(y|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$
$$\stackrel{\triangle}{=} \mathcal{N}\left(y|\mu,\sigma^2\right)$$

The Gaussian density.

## Gaussian Density



The Gaussian PDF with  $\mu = 1.7$  and variance  $\sigma^2 = 0.0225$ . Mean shown as red line. It could represent the heights of a population of students.

## Gaussian Density

$$\mathcal{N}(y|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

 $\sigma^2$  is the variance of the density and  $\mu$  is the mean.

Sum of Gaussians

• Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

#### Sum of Gaussians

• Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

And the sum is distributed as

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

#### Sum of Gaussians

• Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

And the sum is distributed as

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

(*Aside*: As sum increases, sum of non-Gaussian, finite variance variables is also Gaussian [central limit theorem].)

#### Sum of Gaussians

• Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

And the sum is distributed as

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

(*Aside*: As sum increases, sum of non-Gaussian, finite variance variables is also Gaussian [central limit theorem].)

#### Scaling a Gaussian

• Scaling a Gaussian leads to a Gaussian.

#### Scaling a Gaussian

• Scaling a Gaussian leads to a Gaussian.

$$y \sim \mathcal{N}\left(\mu,\sigma^2\right)$$

#### Scaling a Gaussian

• Scaling a Gaussian leads to a Gaussian.

$$y \sim \mathcal{N}\left(\mu, \sigma^2\right)$$

And the scaled density is distributed as

$$wy \sim \mathcal{N}\left(w\mu, w^2\sigma^2\right)$$

## Linear Function



A linear regression between *x* and *y*.

- Predict a real value, y<sub>i</sub> given some inputs x<sub>i</sub>.
- Predict quality of meat given spectral measurements (Tecator data).
- Radiocarbon dating, the C14 calibration curve: predict age given quantity of C14 isotope.
- Predict quality of different Go or Backgammon moves given expert rated training data.

y = mx + c















y = mx + c

point 1: 
$$x = 1, y = 3$$
  
 $3 = m + c$   
point 2:  $x = 3, y = 1$   
 $1 = 3m + c$   
point 3:  $x = 2, y = 2.5$   
 $2.5 = 2m + c$ 

 $y = mx + c + \epsilon$ 

point 1: 
$$x = 1, y = 3$$
  
 $3 = m + c + \epsilon_1$   
point 2:  $x = 3, y = 1$   
 $1 = 3m + c + \epsilon_2$   
point 3:  $x = 2, y = 2.5$   
 $2.5 = 2m + c + \epsilon_3$ 

What about two unknowns and *one* observation?

$$y_1 = mx_1 + c$$





Can compute *m* given *c*.

 $c = 1.75 \Longrightarrow m = 1.25$ 



Can compute *m* given *c*.

$$c = -0.777 \Longrightarrow m = 3.78$$



Can compute *m* given *c*.

 $c = -4.01 \Longrightarrow m = 7.01$ 



Can compute *m* given *c*.

 $c = -0.718 \Longrightarrow m = 3.72$ 



Can compute *m* given *c*.

 $c = 2.45 \Longrightarrow m = 0.545$ 



Can compute *m* given *c*.

 $c = -0.657 \Longrightarrow m = 3.66$ 



Can compute *m* given *c*.

 $c = -3.13 \Longrightarrow m = 6.13$ 



Can compute *m* given *c*.

$$c = -1.47 \Longrightarrow m = 4.47$$


## Underdetermined System

Can compute *m* given *c*. Assume

$$c \sim \mathcal{N}(0,4)$$
,

we find a distribution of solutions.



## Probability for Under- and Overdetermined

- To deal with overdetermined introduced probability distribution for 'variable', ε<sub>i</sub>.
- ► For underdetermined system introduced probability distribution for 'parameter', *c*.
- This is known as a Bayesian treatment.

- ► For general Bayesian inference need multivariate priors.
- E.g. for multivariate linear regression:

$$y_i = \sum_i w_j x_{i,j} + \epsilon_i$$

(where we've dropped *c* for convenience), we need a prior over **w**.

- This motivates a *multivariate* Gaussian density.
- We will use the multivariate Gaussian to put a prior *directly* on the function (a Gaussian process).

- ► For general Bayesian inference need multivariate priors.
- E.g. for multivariate linear regression:

$$y_i = \mathbf{w}^\top \mathbf{x}_{i,:} + \epsilon_i$$

(where we've dropped *c* for convenience), we need a prior over **w**.

- This motivates a *multivariate* Gaussian density.
- We will use the multivariate Gaussian to put a prior *directly* on the function (a Gaussian process).

- Bayesian inference requires a prior on the parameters.
- The prior represents your belief *before* you see the data of the likely value of the parameters.
- For linear regression, consider a Gaussian prior on the intercept:

 $c \sim \mathcal{N}(0, \alpha_1)$ 

- Posterior distribution is found by combining the prior with the likelihood.
- Posterior distribution is your belief *after* you see the data of the likely value of the parameters.
- ► The posterior is found through **Bayes' Rule**

$$p(c|y) = \frac{p(y|c)p(c)}{p(y)}$$

# **Bayes Update**



Figure : A Gaussian prior combines with a Gaussian likelihood for a Gaussian posterior.

# **Bayes Update**



Figure : A Gaussian prior combines with a Gaussian likelihood for a Gaussian posterior.

# **Bayes Update**



Figure : A Gaussian prior combines with a Gaussian likelihood for a Gaussian posterior.

## Stages to Derivation of the Posterior

- Multiply likelihood by prior
  - ► they are "exponentiated quadratics", the answer is always also an exponentiated quadratic because exp(a<sup>2</sup>) exp(b<sup>2</sup>) = exp(a<sup>2</sup> + b<sup>2</sup>).
- Complete the square to get the resulting density in the form of a Gaussian.
- Recognise the mean and (co)variance of the Gaussian. This is the estimate of the posterior.

#### Multivariate Regression Likelihood

Noise corrupted data point

$$y_i = \mathbf{w}^\top \mathbf{x}_{i,:} + \epsilon_i$$

#### Multivariate Regression Likelihood

Noise corrupted data point

$$y_i = \mathbf{w}^\top \mathbf{x}_{i,:} + \epsilon_i$$

Multivariate regression likelihood:

$$p(\mathbf{y}|\mathbf{X}, \mathbf{w}) = \frac{1}{\left(2\pi\sigma^2\right)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n \left(y_i - \mathbf{w}^\top \mathbf{x}_{i,i}\right)^2\right)$$

#### Multivariate Regression Likelihood

Noise corrupted data point

$$y_i = \mathbf{w}^\top \mathbf{x}_{i,:} + \epsilon_i$$

Multivariate regression likelihood:

$$p(\mathbf{y}|\mathbf{X}, \mathbf{w}) = \frac{1}{\left(2\pi\sigma^2\right)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n \left(y_i - \mathbf{w}^\top \mathbf{x}_{i,:}\right)^2\right)$$

• Now use a multivariate Gaussian prior:

$$p(\mathbf{w}) = \frac{1}{\left(2\pi\alpha\right)^{\frac{p}{2}}} \exp\left(-\frac{1}{2\alpha}\mathbf{w}^{\mathsf{T}}\mathbf{w}\right)$$

- ► Consider height, *h*/*m* and weight, *w*/*kg*.
- Could sample height from a distribution:

 $p(h) \sim \mathcal{N}(1.7, 0.0225)$ 

And similarly weight:

 $p(w) \sim N(75, 36)$ 

# Height and Weight Models



#### Gaussian distributions for height and weight.

Marginal Distributions



Marginal Distributions


Marginal Distributions



#### Samples of height and weight

Marginal Distributions



#### Samples of height and weight

• This assumes height and weight are independent.

p(h,w) = p(h)p(w)

• In reality they are dependent (body mass index) =  $\frac{w}{h^2}$ .



p(w,h) = p(w)p(h)

$$p(w,h) = \frac{1}{\sqrt{2\pi\sigma_1^2}\sqrt{2\pi\sigma_2^2}} \exp\left(-\frac{1}{2}\left(\frac{(w-\mu_1)^2}{\sigma_1^2} + \frac{(h-\mu_2)^2}{\sigma_2^2}\right)\right)$$

$$p(w,h) = \frac{1}{2\pi\sqrt{\sigma_1^2\sigma_2^2}} \exp\left(-\frac{1}{2}\left(\begin{bmatrix}w\\h\end{bmatrix} - \begin{bmatrix}\mu_1\\\mu_2\end{bmatrix}\right)^{\mathsf{T}}\begin{bmatrix}\sigma_1^2 & 0\\0 & \sigma_2^2\end{bmatrix}^{-1}\left(\begin{bmatrix}w\\h\end{bmatrix} - \begin{bmatrix}\mu_1\\\mu_2\end{bmatrix}\right)\right)$$

$$p(\mathbf{y}) = \frac{1}{2\pi |\mathbf{D}|} \exp\left(-\frac{1}{2}(\mathbf{y} - \boldsymbol{\mu})^{\top} \mathbf{D}^{-1}(\mathbf{y} - \boldsymbol{\mu})\right)$$

$$p(\mathbf{y}) = \frac{1}{2\pi \left|\mathbf{D}\right|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu})^{\mathsf{T}}\mathbf{D}^{-1}(\mathbf{y}-\boldsymbol{\mu})\right)$$

$$p(\mathbf{y}) = \frac{1}{2\pi |\mathbf{D}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{R}^{\top}\mathbf{y} - \mathbf{R}^{\top}\boldsymbol{\mu})^{\top}\mathbf{D}^{-1}(\mathbf{R}^{\top}\mathbf{y} - \mathbf{R}^{\top}\boldsymbol{\mu})\right)$$

$$p(\mathbf{y}) = \frac{1}{2\pi |\mathbf{D}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu})^{\mathsf{T}} \mathbf{R} \mathbf{D}^{-1} \mathbf{R}^{\mathsf{T}} (\mathbf{y}-\boldsymbol{\mu})\right)$$

this gives a covariance matrix:

$$\mathbf{C}^{-1} = \mathbf{R} \mathbf{D}^{-1} \mathbf{R}^{\top}$$

$$p(\mathbf{y}) = \frac{1}{2\pi |\mathbf{C}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu})^{\top} \mathbf{C}^{-1}(\mathbf{y}-\boldsymbol{\mu})\right)$$

this gives a covariance matrix:

 $\mathbf{C} = \mathbf{R} \mathbf{D} \mathbf{R}^{\top}$ 

#### **Recall Univariate Gaussian Properties**

1. Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

#### **Recall Univariate Gaussian Properties**

1. Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$
#### **Recall Univariate Gaussian Properties**

1. Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

2. Scaling a Gaussian leads to a Gaussian.

#### **Recall Univariate Gaussian Properties**

1. Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

2. Scaling a Gaussian leads to a Gaussian.

$$y \sim \mathcal{N}(\mu, \sigma^2)$$

#### **Recall Univariate Gaussian Properties**

1. Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

2. Scaling a Gaussian leads to a Gaussian.

$$y \sim \mathcal{N}\left(\mu,\sigma^2\right)$$

$$wy \sim \mathcal{N}\left(w\mu, w^2\sigma^2\right)$$

## Multivariate Consequence

► If



#### Multivariate Consequence

• If  $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ • And

 $\mathbf{y} = \mathbf{W}\mathbf{x}$ 

#### Multivariate Consequence



#### **Multi-variate Gaussians**

- We will consider a Gaussian with a particular structure of covariance matrix.
- Generate a single sample from this 25 dimensional Gaussian distribution,  $\mathbf{f} = [f_1, f_2 \dots f_{25}]$ .
- We will plot these points against their index.



(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap *i*showing correlations between dimensions.



(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap *i*showing correlations between dimensions.







(b) colormap showing correlations between dimensions.





(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap showing correlations between dimensions.



(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap showing correlations between dimensions.



0.8 0.6 0.4 0.2

(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap showing correlations between dimensions.



(a) A 25 dimensional correlated random variable (values ploted against index)



(b) colormap showing correlations between dimensions.





The single contour of the Gaussian density represents the joint distribution, p(f<sub>1</sub>, f<sub>2</sub>).



- ► The single contour of the Gaussian density represents the joint distribution, p(f<sub>1</sub>, f<sub>2</sub>).
- We observe that  $f_1 = -0.313$ .



- ► The single contour of the Gaussian density represents the joint distribution, p(f<sub>1</sub>, f<sub>2</sub>).
- We observe that  $f_1 = -0.313$ .
- Conditional density:  $p(f_2|f_1 = -0.313)$ .



- ► The single contour of the Gaussian density represents the joint distribution, p(f<sub>1</sub>, f<sub>2</sub>).
- We observe that  $f_1 = -0.313$ .
- Conditional density:  $p(f_2|f_1 = -0.313)$ .

#### Prediction with Correlated Gaussians

- ▶ Prediction of *f*<sub>2</sub> from *f*<sub>1</sub> requires *conditional density*.
- Conditional density is *also* Gaussian.

$$p(f_2|f_1) = \mathcal{N}\left(f_2|\frac{k_{1,2}}{k_{1,1}}f_1, k_{2,2} - \frac{k_{1,2}^2}{k_{1,1}}\right)$$

where covariance of joint density is given by

$$\mathbf{K} = \begin{bmatrix} k_{1,1} & k_{1,2} \\ k_{2,1} & k_{2,2} \end{bmatrix}$$



The single contour of the Gaussian density represents the joint distribution, p(f<sub>1</sub>, f<sub>5</sub>).



- The single contour of the Gaussian density represents the joint distribution, p(f<sub>1</sub>, f<sub>5</sub>).
- We observe that  $f_1 = -0.313$ .



- The single contour of the Gaussian density represents the joint distribution, p(f<sub>1</sub>, f<sub>5</sub>).
- We observe that  $f_1 = -0.313$ .
- Conditional density:  $p(f_5|f_1 = -0.313)$ .



- The single contour of the Gaussian density represents the joint distribution, p(f<sub>1</sub>, f<sub>5</sub>).
- We observe that  $f_1 = -0.313$ .
- Conditional density:  $p(f_5|f_1 = -0.313)$ .

#### Prediction with Correlated Gaussians

- Prediction of f<sub>\*</sub> from f requires multivariate *conditional density*.
- Multivariate conditional density is *also* Gaussian.

$$p(\mathbf{f}_*|\mathbf{f}) = \mathcal{N}\left(\mathbf{f}_*|\mathbf{K}_{*,f}\mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1}\mathbf{f},\mathbf{K}_{*,*} - \mathbf{K}_{*,f}\mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1}\mathbf{K}_{\mathbf{f},*}\right)$$

Here covariance of joint density is given by

$$\mathbf{K} = \begin{bmatrix} \mathbf{K}_{f,f} & \mathbf{K}_{*,f} \\ \mathbf{K}_{f,*} & \mathbf{K}_{*,*} \end{bmatrix}$$

#### Prediction with Correlated Gaussians

- Prediction of f<sub>\*</sub> from f requires multivariate *conditional density*.
- Multivariate conditional density is *also* Gaussian.

$$p(\mathbf{f}_*|\mathbf{f}) = \mathcal{N}\left(\mathbf{f}_*|\boldsymbol{\mu}, \boldsymbol{\Sigma}\right)$$
$$\boldsymbol{\mu} = \mathbf{K}_{*,f} \mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1} \mathbf{f}$$
$$\boldsymbol{\Sigma} = \mathbf{K}_{*,*} - \mathbf{K}_{*,f} \mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1} \mathbf{K}_{\mathbf{f},*}$$
$$\blacktriangleright \text{ Here covariance of joint density is given by}$$

$$\mathbf{K} = \begin{bmatrix} \mathbf{K}_{f,f} & \mathbf{K}_{*,f} \\ \mathbf{K}_{f,*} & \mathbf{K}_{*,*} \end{bmatrix}$$

Where did this covariance matrix come from?

# Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{2\ell^2}\right)$$

- Covariance matrix is built using the *inputs* to the function x.
- For the example above it was based on Euclidean distance.
- The covariance function is also know as a kernel.



Where did this covariance matrix come from?

## Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{2\ell^2}\right)$$

- Covariance matrix is built using the *inputs* to the function x.
- For the example above it was based on Euclidean distance.
- The covariance function is also know as a kernel.

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_1 = -3.0, x_1 = -3.0$$

$$k_{1,1} = 1.00 \times \exp\left(-\frac{(-3.0 - -3.0)^2}{2 \times 2.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_1 = -3.0, x_1 = -3.0$$

$$k_{1,1} = 1.00 \times \exp\left(-\frac{(-3.0 - -3.0)^2}{2 \times 2.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{2} = 1.20, x_{1} = -3.0$$

$$k_{2,1} = 1.00 \times \exp\left(-\frac{(1.20 - 3.0)^{2}}{2 \times 2.00^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{2} = 1.20, x_{1} = -3.0$$

$$k_{2,1} = 1.00 \times \exp\left(-\frac{(1.20 - 3.0)^{2}}{2 \times 2.00^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_1 = -3.0$$

$$k_{2,1} = 1.00 \times \exp\left(-\frac{(1.20 - 3.0)^2}{2 \times 2.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_2 = 1.20$$

$$k_{2,2} = 1.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 2.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_2 = 1.20$$

$$k_{2,2} = 1.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 2.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_1 = -3.0$$

$$k_{3,1} = 1.00 \times \exp\left(-\frac{(1.40 - -3.0)^2}{2 \times 2.00^2}\right)$$
Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{3} = 1.40, x_{1} = -3.0$$

$$k_{3,1} = 1.00 \times \exp\left(-\frac{(1.40 - 3.0)^{2}}{2 \times 2.00^{2}}\right)$$

$$0.0889$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_1 = -3.0$$

$$k_{3,1} = 1.00 \times \exp\left(-\frac{(1.40 - 3.0)^2}{2 \times 2.00^2}\right)$$

$$0.0889$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 1.00 \times \exp\left(-\frac{(1.40 - 1.20)^2}{2 \times 2.00^2}\right)$$

$$0.0889$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 1.00 \times \exp\left(-\frac{(1.40 - 1.20)^2}{2 \times 2.00^2}\right)$$

$$0.0889$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 1.00 \times \exp\left(-\frac{(1.40 - 1.20)^2}{2 \times 2.00^2}\right)$$

$$0.0889 \quad 0.995$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{3} = 1.40, x_{3} = 1.40$$

$$k_{3,3} = 1.00 \times \exp\left(-\frac{(1.40 - 1.40)^{2}}{2 \times 2.00^{2}}\right)$$

$$0.0889 \quad 0.995$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_3 = 1.40$$

$$k_{3,3} = 1.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 2.00^2}\right)$$

$$1.00$$

$$1.00 \quad 0.110 \quad 0.0889$$

$$0.995$$

$$1.00$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$



Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_1 = -3, x_1 = -3$$

$$k_{1,1} = 1.0 \times \exp\left(-\frac{(-3--3)^2}{2 \times 2.0^2}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{||x_{i} - x_{j}||^{2}}{2\ell^{2}}\right)$$

$$x_{1} = -3, x_{1} = -3$$

$$k_{1,1} = 1.0 \times \exp\left(-\frac{(-3 - 3)^{2}}{2 \times 2.0^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{||x_{i} - x_{j}||^{2}}{2\ell^{2}}\right)$$

$$x_{2} = 1.2, x_{1} = -3$$

$$k_{2,1} = 1.0 \times \exp\left(-\frac{(1.2 - 3)^{2}}{2 \times 2.0^{2}}\right)$$

Where did this covariance matrix come from?

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{||x_{i} - x_{j}||^{2}}{2\ell^{2}}\right)$$

$$x_{2} = 1.2, x_{1} = -3$$

$$k_{2,1} = 1.0 \times \exp\left(-\frac{(1.2 - 3)^{2}}{2 \times 2.0^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{||x_{i}-x_{j}||^{2}}{2\ell^{2}}\right)$$

$$x_{2} = 1.2, x_{2} = 1.2$$

$$k_{2,2} = 1.0 \times \exp\left(-\frac{(1.2-1.2)^{2}}{2\times 2.0^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{||x_{i} - x_{j}||^{2}}{2\ell^{2}}\right)$$

$$x_{2} = 1.2, x_{2} = 1.2$$

$$k_{2,2} = 1.0 \times \exp\left(-\frac{(1.2 - 1.2)^{2}}{2 \times 2.0^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{||x_{i} - x_{j}||^{2}}{2\ell^{2}}\right)$$

$$x_{3} = 1.4, x_{1} = -3$$

$$k_{3,1} = 1.0 \times \exp\left(-\frac{(1.4 - -3)^{2}}{2 \times 2.0^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_1 = -3$$

$$k_{3,1} = 1.0 \times \exp\left(-\frac{(1.4 - 3)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.11$$

$$0.11 \quad 1.0$$

$$0.089$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{3} = 1.4, x_{1} = -3$$

$$k_{3,1} = 1.0 \times \exp\left(-\frac{(1.4 - 3)^{2}}{2 \times 2.0^{2}}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 \\ 0.11 & 1.0 \\ 0.089 \end{bmatrix}$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{3} = 1.4, x_{2} = 1.2$$

$$k_{3,2} = 1.0 \times \exp\left(-\frac{(1.4 - 1.2)^{2}}{2 \times 2.0^{2}}\right)$$

$$1.0 = 0.11 = 0.089$$

$$0.11 = 1.0$$

$$0.089$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_2 = 1.2$$

$$k_{3,2} = 1.0 \times \exp\left(-\frac{(1.4 - 1.2)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 \\ 0.11 & 1.0 \\ 0.089 & 1.0 \end{bmatrix}$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_2 = 1.2$$

$$k_{3,2} = 1.0 \times \exp\left(-\frac{(1.4 - 1.2)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 \\ 0.11 & 1.0 & 1.0 \\ 0.089 & 1.0 \end{bmatrix}$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_3 = 1.4$$

$$k_{3,3} = 1.0 \times \exp\left(-\frac{(1.4 - 1.4)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 \\ 0.11 & 1.0 & 1.0 \\ 0.089 & 1.0 \end{bmatrix}$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{3} = 1.4, x_{3} = 1.4$$

$$k_{3,3} = 1.0 \times \exp\left(-\frac{(1.4 - 1.4)^{2}}{2 \times 2.0^{2}}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 \\ 0.11 & 1.0 & 1.0 \\ 0.089 & 1.0 & 1.0 \end{bmatrix}$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_1 = -3$$

$$k_{4,1} = 1.0 \times \exp\left(-\frac{(2.0 - 3)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 \\ 0.11 & 1.0 & 1.0 \\ 0.089 & 1.0 & 1.0 \end{bmatrix}$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_1 = -3$$

$$k_{4,1} = 1.0 \times \exp\left(-\frac{(2.0 - 3)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.011 \quad 0.089$$

$$1.0 \quad 1.0$$

$$0.044$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_1 = -3$$

$$k_{4,1} = 1.0 \times \exp\left(-\frac{(2.0 - 3)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.11 \quad 0.089 \quad 0.044$$

$$0.11 \quad 1.0 \quad 1.0$$

$$0.044$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_2 = 1.2$$

$$k_{4,2} = 1.0 \times \exp\left(-\frac{(2.0 - 1.2)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.11 \quad 0.089 \quad 0.044$$

$$0.11 \quad 1.0 \quad 1.0$$

$$0.044$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_2 = 1.2$$

$$k_{4,2} = 1.0 \times \exp\left(-\frac{(2.0 - 1.2)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.044$$

$$0.11 \quad 1.0 \quad 1.0$$

$$0.044 \quad 0.92$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_2 = 1.2$$

$$k_{4,2} = 1.0 \times \exp\left(-\frac{(2.0 - 1.2)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.11 \quad 0.089 \quad 0.044$$

$$0.11 \quad 1.0 \quad 0.92$$

$$0.089 \quad 1.0 \quad 1.0$$

$$0.044 \quad 0.92$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_3 = 1.4$$

$$k_{4,3} = 1.0 \times \exp\left(-\frac{(2.0 - 1.4)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 & 0.044 \\ 0.11 & 1.0 & 1.0 & 0.92 \\ 0.089 & 1.0 & 1.0 \\ 0.044 & 0.92 \end{bmatrix}$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_3 = 1.4$$

$$k_{4,3} = 1.0 \times \exp\left(-\frac{(2.0 - 1.4)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.11 \quad 0.089 \quad 0.044$$

$$0.11 \quad 1.0 \quad 0.92$$

$$0.089 \quad 1.0 \quad 1.0$$

$$0.044 \quad 0.92 \quad 0.96$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_3 = 1.4$$

$$k_{4,3} = 1.0 \times \exp\left(-\frac{(2.0 - 1.4)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 & 0.044 \\ 0.11 & 1.0 & 1.0 & 0.92 \\ 0.089 & 1.0 & 1.0 & 0.96 \\ 0.044 & 0.92 & 0.96 \end{bmatrix}$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_4 = 2.0$$

$$k_{4,4} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.11 \quad 0.089 \quad 0.044$$

$$0.11 \quad 1.0 \quad 0.92$$

$$0.089 \quad 1.0 \quad 1.0 \quad 0.96$$

$$0.044 \quad 0.92 \quad 0.96$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_4 = 2.0$$

$$k_{4,4} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.11 \quad 0.089 \quad 0.044$$

$$0.11 \quad 1.0 \quad 0.92$$

$$0.089 \quad 1.0 \quad 1.0 \quad 0.96$$

$$0.044 \quad 0.92 \quad 0.96 \quad 1.0$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$



Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_1 = -3.0, x_1 = -3.0$$

$$k_{1,1} = 4.00 \times \exp\left(-\frac{(-3.0 - -3.0)^2}{2 \times 5.00^2}\right)$$
Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{1} = -3.0, x_{1} = -3.0$$

$$k_{1,1} = 4.00 \times \exp\left(-\frac{(-3.0 - 3.0)^{2}}{2\times 5.00^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_1 = -3.0$$

$$k_{2,1} = 4.00 \times \exp\left(-\frac{(1.20 - 3.0)^2}{2 \times 5.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{2} = 1.20, x_{1} = -3.0$$

$$k_{2,1} = 4.00 \times \exp\left(-\frac{(1.20 - 3.0)^{2}}{2\times 5.00^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{2} = 1.20, x_{1} = -3.0$$

$$k_{2,1} = 4.00 \times \exp\left(-\frac{(1.20 - 3.0)^{2}}{2 \times 5.00^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_2 = 1.20$$

$$k_{2,2} = 4.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 5.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_2 = 1.20$$

$$k_{2,2} = 4.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 5.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{3} = 1.40, x_{1} = -3.0$$

$$k_{3,1} = 4.00 \times \exp\left(-\frac{(1.40 - -3.0)^{2}}{2\times 5.00^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{3} = 1.40, x_{1} = -3.0$$

$$k_{3,1} = 4.00 \times \exp\left(-\frac{(1.40 - 3.0)^{2}}{2\times 5.00^{2}}\right)$$

$$2.72$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_1 = -3.0$$

$$k_{3,1} = 4.00 \times \exp\left(-\frac{(1.40 - 3.0)^2}{2 \times 5.00^2}\right)$$

$$2.72$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 4.00 \times \exp\left(-\frac{(1.40 - 1.20)^2}{2 \times 5.00^2}\right)$$

$$2.72$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 4.00 \times \exp\left(-\frac{(1.40 - 1.20)^2}{2 \times 5.00^2}\right)$$

$$2.72$$

$$4.00$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 4.00 \times \exp\left(-\frac{(1.40 - 1.20)^2}{2 \times 5.00^2}\right)$$

$$2.72 \quad 4.00$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_3 = 1.40$$

$$k_{3,3} = 4.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 5.00^2}\right)$$

$$2.72 \quad 4.00$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_3 = 1.40$$

$$k_{3,3} = 4.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 5.00^2}\right)$$

$$2.72 \quad 4.00 \quad 4.00$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$





#### The Gaussian Density

#### Covariance from Basis Functions

**Basis Function Representations** 

### **Basis Function Form**

#### Radial basis functions commonly have the form

$$\phi_k(\mathbf{x}_i) = \exp\left(-\frac{\left|\mathbf{x}_i - \boldsymbol{\mu}_k\right|^2}{2\ell^2}\right)$$



Figure : A set of radial basis functions with width  $\ell = 2$  and location parameters  $\mu = [-4 \ 0 \ 4]^{\top}$ .

Represent a function by a linear sum over a basis,

$$f(\mathbf{x}_{i,:};\mathbf{w}) = \sum_{k=1}^{M} w_k \phi_k(\mathbf{x}_{i,:}), \qquad (1)$$

• Here: *M* basis functions and  $\phi_k(\cdot)$  is *k*th basis function and

$$\mathbf{w} = [w_1, \ldots, w_M]^\top.$$

• For standard linear model:  $\phi_k(\mathbf{x}_{i,:}) = x_{i,k}$ .

## **Random Functions**

Functions derived using:

$$f(x) = \sum_{k=1}^{M} w_k \phi_k(x),$$

where **W** is sampled from a Gaussian density,

$$w_k \sim \mathcal{N}(0, \alpha)$$
.



х

Figure : Functions sampled using the basis set from figure 3. Each line is a separate sample, generated by a weighted sum of the basis set. The weights, **w** are sampled from a Gaussian density with variance  $\alpha = 1$ .

Use matrix notation to write function,

$$f(\mathbf{x}_i; \mathbf{w}) = \sum_{k=1}^{M} w_k \phi_k(\mathbf{x}_i)$$

Use matrix notation to write function,

$$f(\mathbf{x}_i; \mathbf{w}) = \sum_{k=1}^{M} w_k \phi_k(\mathbf{x}_i)$$

computed at training data gives a vector

 $f = \Phi w$ .

Use matrix notation to write function,

$$f(\mathbf{x}_i; \mathbf{w}) = \sum_{k=1}^{M} w_k \phi_k(\mathbf{x}_i)$$

computed at training data gives a vector

 $f = \Phi w$ .

w and **f** are only related by an *inner product*.

Use matrix notation to write function,

$$f(\mathbf{x}_i; \mathbf{w}) = \sum_{k=1}^{M} w_k \phi_k(\mathbf{x}_i)$$

computed at training data gives a vector

 $f = \Phi w$ .

w and f are only related by an *inner product*.

 $\mathbf{\Phi} \in \mathfrak{R}^{n \times p}$  is a design matrix

Use matrix notation to write function,

$$f(\mathbf{x}_i; \mathbf{w}) = \sum_{k=1}^{M} w_k \phi_k(\mathbf{x}_i)$$

computed at training data gives a vector

 $f = \Phi w$ .

#### w and f are only related by an *inner product*.

 $\mathbf{\Phi} \in \mathfrak{R}^{n \times p}$  is a design matrix

 $\Phi$  is fixed and non-stochastic for a given training set.

Use matrix notation to write function,

$$f(\mathbf{x}_i; \mathbf{w}) = \sum_{k=1}^{M} w_k \phi_k(\mathbf{x}_i)$$

computed at training data gives a vector  $\mathbf{f} = \mathbf{\Phi} \mathbf{w}$ 

w and f are only related by an *inner product*.

 $\mathbf{\Phi} \in \mathfrak{R}^{n \times p}$  is a design matrix

 $\Phi$  is fixed and non-stochastic for a given training set.

f is Gaussian distributed.

We have

$$\langle \mathbf{f} \rangle = \mathbf{\Phi} \langle \mathbf{w} \rangle.$$

We have

$$\langle \mathbf{f} \rangle = \mathbf{\Phi} \langle \mathbf{w} \rangle.$$

Prior mean of w was zero giving

$$\langle \mathbf{f} \rangle = \mathbf{0}.$$

We have

$$\langle \mathbf{f} \rangle = \mathbf{\Phi} \langle \mathbf{w} \rangle.$$

Prior mean of w was zero giving

$$\langle \mathbf{f} \rangle = \mathbf{0}.$$

Prior covariance of **f** is

$$\mathbf{K} = \left\langle \mathbf{f} \mathbf{f}^{\top} \right\rangle - \left\langle \mathbf{f} \right\rangle \left\langle \mathbf{f} \right\rangle^{\top}$$

# Expectations

We have

$$\langle \mathbf{f} \rangle = \mathbf{\Phi} \langle \mathbf{w} \rangle.$$

Prior mean of w was zero giving

$$\left\langle f\right\rangle =0.$$

Prior covariance of f is

$$\mathbf{K} = \left\langle \mathbf{f} \mathbf{f}^{\top} \right\rangle - \left\langle \mathbf{f} \right\rangle \left\langle \mathbf{f} \right\rangle^{\top}$$
$$\left\langle \mathbf{f} \mathbf{f}^{\top} \right\rangle = \mathbf{\Phi} \left\langle \mathbf{w} \mathbf{w}^{\top} \right\rangle \mathbf{\Phi}^{\top},$$

giving

$$\mathbf{K} = \gamma' \mathbf{\Phi} \mathbf{\Phi}^{\mathsf{T}}.$$

► The prior covariance between two points **x**<sub>*i*</sub> and **x**<sub>*j*</sub> is

$$k(\mathbf{x}_i, \mathbf{x}_j) = \phi_{:} (\mathbf{x}_i)^{\top} \phi_{:} (\mathbf{x}_j),$$

► The prior covariance between two points **x**<sub>*i*</sub> and **x**<sub>*j*</sub> is

$$k(\mathbf{x}_i, \mathbf{x}_j) = \phi_{:} (\mathbf{x}_i)^{\top} \phi_{:} (\mathbf{x}_j),$$

or in sum notation

$$k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) = \gamma' \sum_{\ell}^{M} \phi_{\ell}\left(\mathbf{x}_{i}\right) \phi_{\ell}\left(\mathbf{x}_{j}\right)$$

• The prior covariance between two points **x**<sub>*i*</sub> and **x**<sub>*j*</sub> is

$$k(\mathbf{x}_i, \mathbf{x}_j) = \phi_{:} (\mathbf{x}_i)^{\top} \phi_{:} (\mathbf{x}_j),$$

or in sum notation

$$k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) = \gamma' \sum_{\ell}^{M} \phi_{\ell}\left(\mathbf{x}_{i}\right) \phi_{\ell}\left(\mathbf{x}_{j}\right)$$

For the radial basis used this gives

► The prior covariance between two points **x**<sub>*i*</sub> and **x**<sub>*j*</sub> is

$$k(\mathbf{x}_i, \mathbf{x}_j) = \phi_{:} (\mathbf{x}_i)^{\top} \phi_{:} (\mathbf{x}_j),$$

or in sum notation

$$k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) = \gamma' \sum_{\ell}^{M} \phi_{\ell}\left(\mathbf{x}_{i}\right) \phi_{\ell}\left(\mathbf{x}_{j}\right)$$

For the radial basis used this gives

$$k\left(\mathbf{x}_{i},\mathbf{x}_{j}\right) = \gamma' \sum_{k=1}^{M} \exp\left(-\frac{\left|\mathbf{x}_{i}-\boldsymbol{\mu}_{k}\right|^{2}+\left|\mathbf{x}_{j}-\boldsymbol{\mu}_{k}\right|^{2}}{2\ell^{2}}\right).$$

**RBF Basis Functions** 

$$k(\mathbf{x}, \mathbf{x}') = \alpha \boldsymbol{\phi}(\mathbf{x})^\top \boldsymbol{\phi}(\mathbf{x}')$$

$$\phi_i(x) = \exp\left(-\frac{\|x - \mu_i\|_2^2}{\ell^2}\right)$$
$$\mu = \begin{bmatrix} -1\\0\\1 \end{bmatrix}$$



**RBF Basis Functions** 

$$k(\mathbf{x}, \mathbf{x}') = \alpha \boldsymbol{\phi}(\mathbf{x})^\top \boldsymbol{\phi}(\mathbf{x}')$$





# Selecting Number and Location of Basis

- Need to choose
  - 1. location of centers
# Selecting Number and Location of Basis

- Need to choose
  - 1. location of centers
  - 2. number of basis functions

## Selecting Number and Location of Basis

- Need to choose
  - 1. location of centers
  - 2. number of basis functions
- Consider uniform spacing over a region:

$$k(x_i, x_j) = \gamma \Delta \sum_{k=1}^{M} \exp\left(-\frac{x_i^2 + x_j^2 - 2\mu_k(x_i + x_j) + 2\mu_k^2}{2\ell^2}\right),$$

Restrict analysis to 1-D input, *x*.

## **Uniform Basis Functions**

Set each center location to

$$\mu_k = a + \Delta \mu \cdot (k-1).$$

#### **Uniform Basis Functions**

Set each center location to

$$\mu_k = a + \Delta \mu \cdot (k-1).$$

Specify the basis functions in terms of their indices,

$$k(x_i, x_j) = \gamma \Delta \mu \sum_{k=0}^{M-1} \exp\left(-\frac{x_i^2 + x_j^2}{2\ell^2} - \frac{2(a + \Delta \mu \cdot k)(x_i + x_j) + 2(a + \Delta \mu \cdot k)^2}{2\ell^2}\right)$$

## Infinite Basis Functions

• Take 
$$\mu_0 = a$$
 and  $\mu_M = b$  so  $b = a + \Delta \mu \cdot (M - 1)$ .

### Infinite Basis Functions

- Take  $\mu_0 = a$  and  $\mu_M = b$  so  $b = a + \Delta \mu \cdot (M 1)$ .
- Take limit as  $\Delta \mu \rightarrow 0$  so  $M \rightarrow \infty$

#### Infinite Basis Functions

- Take  $\mu_0 = a$  and  $\mu_M = b$  so  $b = a + \Delta \mu \cdot (M 1)$ .
- Take limit as  $\Delta \mu \rightarrow 0$  so  $M \rightarrow \infty$

$$\begin{split} k(x_i, x_j) = &\gamma \int_a^b \exp\left(-\frac{x_i^2 + x_j^2}{2\ell^2} + \frac{2\left(\mu - \frac{1}{2}\left(x_i + x_j\right)\right)^2 - \frac{1}{2}\left(x_i + x_j\right)^2}{2\ell^2}\right) d\mu, \end{split}$$

where we have used  $k \cdot \Delta \mu \rightarrow \mu$ .

## Result

Performing the integration leads to

$$k(x_i, x_j) = \gamma \frac{\sqrt{\pi \ell^2}}{2} \exp\left(-\frac{\left(x_i - x_j\right)^2}{4\ell^2}\right) \\ \times \left[ \exp\left(\frac{\left(b - \frac{1}{2}\left(x_i + x_j\right)\right)}{\ell}\right) - \exp\left(\frac{\left(a - \frac{1}{2}\left(x_i + x_j\right)\right)}{\ell}\right) \right],$$

## Result

Performing the integration leads to

$$k(x_i, x_j) = \gamma \frac{\sqrt{\pi \ell^2}}{2} \exp\left(-\frac{(x_i - x_j)^2}{4\ell^2}\right) \\ \times \left[ \operatorname{erf}\left(\frac{\left(b - \frac{1}{2}\left(x_i + x_j\right)\right)}{\ell}\right) - \operatorname{erf}\left(\frac{\left(a - \frac{1}{2}\left(x_i + x_j\right)\right)}{\ell}\right) \right],$$

• Now take limit as  $a \to -\infty$  and  $b \to \infty$ 

## Result

Performing the integration leads to

$$k(x_i, x_j) = \gamma \frac{\sqrt{\pi \ell^2}}{2} \exp\left(-\frac{\left(x_i - x_j\right)^2}{4\ell^2}\right) \\ \times \left[ \operatorname{erf}\left(\frac{\left(b - \frac{1}{2}\left(x_i + x_j\right)\right)}{\ell}\right) - \operatorname{erf}\left(\frac{\left(a - \frac{1}{2}\left(x_i + x_j\right)\right)}{\ell}\right) \right],$$

• Now take limit as  $a \to -\infty$  and  $b \to \infty$ 

$$k(x_i, x_j) = \alpha \exp\left(-\frac{(x_i - x_j)^2}{4\ell^2}\right).$$

where  $\alpha = \gamma \sqrt{\pi \ell^2}$ .

 An RBF model with infinite basis functions is a Gaussian process.

- An RBF model with infinite basis functions is a Gaussian process.
- The covariance function is given by the exponentiated quadratic covariance function.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{(x_i - x_j)^2}{4\ell^2}\right).$$

where  $\alpha = \gamma \sqrt{\pi \ell^2}$ .

# Infinite Feature Space

- An RBF model with infinite basis functions is a Gaussian process.
- The covariance function is the exponentiated quadratic.
- Note: The functional form for the covariance function and basis functions are similar.
  - this is a special case,
  - in general they are very different

# Similar results can obtained for multi-dimensional input models Williams (1998); Neal (1996).

- R. M. Neal. Bayesian Learning for Neural Networks. Springer, 1996. Lecture Notes in Statistics 118.
- C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, Cambridge, MA, 2006. [Google Books] .
- C. K. I. Williams. Computation with infinite neural networks. Neural Computation, 10(5):1203–1216, 1998.