Introduction to Gaussian Processes

Neil D. Lawrence

GPWS 13th January 2013

Rasmussen and Williams (2006)

The Gaussian Density

Covariance from Basis Functions

Basis Function Representations

The Gaussian Density

Covariance from Basis Functions

Basis Function Representations

Perhaps the most common probability density.

$$p(y|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$
$$\stackrel{\triangle}{=} \mathcal{N}\left(y|\mu,\sigma^2\right)$$

The Gaussian density.

Gaussian Density

The Gaussian PDF with $\mu = 1.7$ and variance $\sigma^2 = 0.0225$. Mean shown as red line. It could represent the heights of a population of students.

Gaussian Density

$$\mathcal{N}(y|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

 σ^2 is the variance of the density and μ is the mean.

Sum of Gaussians

• Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

Sum of Gaussians

• Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

And the sum is distributed as

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

Sum of Gaussians

• Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

And the sum is distributed as

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

(*Aside*: As sum increases, sum of non-Gaussian, finite variance variables is also Gaussian [central limit theorem].)

Sum of Gaussians

• Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

And the sum is distributed as

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

(*Aside*: As sum increases, sum of non-Gaussian, finite variance variables is also Gaussian [central limit theorem].)

Scaling a Gaussian

• Scaling a Gaussian leads to a Gaussian.

Scaling a Gaussian

• Scaling a Gaussian leads to a Gaussian.

$$y \sim \mathcal{N}\left(\mu,\sigma^2\right)$$

Scaling a Gaussian

• Scaling a Gaussian leads to a Gaussian.

$$y \sim \mathcal{N}\left(\mu, \sigma^2\right)$$

And the scaled density is distributed as

$$wy \sim \mathcal{N}\left(w\mu, w^2\sigma^2\right)$$

Linear Function

A linear regression between *x* and *y*.

- Predict a real value, y_i given some inputs x_i.
- Predict quality of meat given spectral measurements (Tecator data).
- Radiocarbon dating, the C14 calibration curve: predict age given quantity of C14 isotope.
- Predict quality of different Go or Backgammon moves given expert rated training data.

y = mx + c

y = mx + c

point 1:
$$x = 1, y = 3$$

 $3 = m + c$
point 2: $x = 3, y = 1$
 $1 = 3m + c$
point 3: $x = 2, y = 2.5$
 $2.5 = 2m + c$

 $y = mx + c + \epsilon$

point 1:
$$x = 1, y = 3$$

 $3 = m + c + \epsilon_1$
point 2: $x = 3, y = 1$
 $1 = 3m + c + \epsilon_2$
point 3: $x = 2, y = 2.5$
 $2.5 = 2m + c + \epsilon_3$

What about two unknowns and *one* observation?

$$y_1 = mx_1 + c$$

Can compute *m* given *c*.

 $c = 1.75 \Longrightarrow m = 1.25$

Can compute *m* given *c*.

$$c = -0.777 \Longrightarrow m = 3.78$$

Can compute *m* given *c*.

 $c = -4.01 \Longrightarrow m = 7.01$

Can compute *m* given *c*.

 $c = -0.718 \Longrightarrow m = 3.72$

Can compute *m* given *c*.

 $c = 2.45 \Longrightarrow m = 0.545$

Can compute *m* given *c*.

 $c = -0.657 \Longrightarrow m = 3.66$

Can compute *m* given *c*.

 $c = -3.13 \Longrightarrow m = 6.13$

Can compute *m* given *c*.

$$c = -1.47 \Longrightarrow m = 4.47$$

Underdetermined System

Can compute *m* given *c*. Assume

$$c \sim \mathcal{N}(0,4)$$
,

we find a distribution of solutions.

Probability for Under- and Overdetermined

- To deal with overdetermined introduced probability distribution for 'variable', ε_i.
- ► For underdetermined system introduced probability distribution for 'parameter', *c*.
- This is known as a Bayesian treatment.

- ► For general Bayesian inference need multivariate priors.
- E.g. for multivariate linear regression:

$$y_i = \sum_i w_j x_{i,j} + \epsilon_i$$

(where we've dropped *c* for convenience), we need a prior over **w**.

- This motivates a *multivariate* Gaussian density.
- We will use the multivariate Gaussian to put a prior *directly* on the function (a Gaussian process).

- ► For general Bayesian inference need multivariate priors.
- E.g. for multivariate linear regression:

$$y_i = \mathbf{w}^\top \mathbf{x}_{i,:} + \epsilon_i$$

(where we've dropped *c* for convenience), we need a prior over **w**.

- This motivates a *multivariate* Gaussian density.
- We will use the multivariate Gaussian to put a prior *directly* on the function (a Gaussian process).

- Bayesian inference requires a prior on the parameters.
- The prior represents your belief *before* you see the data of the likely value of the parameters.
- For linear regression, consider a Gaussian prior on the intercept:

 $c \sim \mathcal{N}(0, \alpha_1)$

- Posterior distribution is found by combining the prior with the likelihood.
- Posterior distribution is your belief *after* you see the data of the likely value of the parameters.
- ► The posterior is found through **Bayes' Rule**

$$p(c|y) = \frac{p(y|c)p(c)}{p(y)}$$

Bayes Update

Figure : A Gaussian prior combines with a Gaussian likelihood for a Gaussian posterior.

Bayes Update

Figure : A Gaussian prior combines with a Gaussian likelihood for a Gaussian posterior.

Bayes Update

Figure : A Gaussian prior combines with a Gaussian likelihood for a Gaussian posterior.

Stages to Derivation of the Posterior

- Multiply likelihood by prior
 - ► they are "exponentiated quadratics", the answer is always also an exponentiated quadratic because exp(a²) exp(b²) = exp(a² + b²).
- Complete the square to get the resulting density in the form of a Gaussian.
- Recognise the mean and (co)variance of the Gaussian. This is the estimate of the posterior.

Multivariate Regression Likelihood

Noise corrupted data point

$$y_i = \mathbf{w}^\top \mathbf{x}_{i,:} + \epsilon_i$$

Multivariate Regression Likelihood

Noise corrupted data point

$$y_i = \mathbf{w}^\top \mathbf{x}_{i,:} + \epsilon_i$$

Multivariate regression likelihood:

$$p(\mathbf{y}|\mathbf{X}, \mathbf{w}) = \frac{1}{\left(2\pi\sigma^2\right)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n \left(y_i - \mathbf{w}^\top \mathbf{x}_{i,i}\right)^2\right)$$

Multivariate Regression Likelihood

Noise corrupted data point

$$y_i = \mathbf{w}^\top \mathbf{x}_{i,:} + \epsilon_i$$

Multivariate regression likelihood:

$$p(\mathbf{y}|\mathbf{X}, \mathbf{w}) = \frac{1}{\left(2\pi\sigma^2\right)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n \left(y_i - \mathbf{w}^\top \mathbf{x}_{i,:}\right)^2\right)$$

• Now use a multivariate Gaussian prior:

$$p(\mathbf{w}) = \frac{1}{\left(2\pi\alpha\right)^{\frac{p}{2}}} \exp\left(-\frac{1}{2\alpha}\mathbf{w}^{\mathsf{T}}\mathbf{w}\right)$$

- ► Consider height, *h*/*m* and weight, *w*/*kg*.
- Could sample height from a distribution:

 $p(h) \sim \mathcal{N}(1.7, 0.0225)$

And similarly weight:

 $p(w) \sim N(75, 36)$

Height and Weight Models

Gaussian distributions for height and weight.

Marginal Distributions

Marginal Distributions

Marginal Distributions

Samples of height and weight

Marginal Distributions

Samples of height and weight

• This assumes height and weight are independent.

p(h,w) = p(h)p(w)

• In reality they are dependent (body mass index) = $\frac{w}{h^2}$.

p(w,h) = p(w)p(h)

$$p(w,h) = \frac{1}{\sqrt{2\pi\sigma_1^2}\sqrt{2\pi\sigma_2^2}} \exp\left(-\frac{1}{2}\left(\frac{(w-\mu_1)^2}{\sigma_1^2} + \frac{(h-\mu_2)^2}{\sigma_2^2}\right)\right)$$

$$p(w,h) = \frac{1}{2\pi\sqrt{\sigma_1^2\sigma_2^2}} \exp\left(-\frac{1}{2}\left(\begin{bmatrix}w\\h\end{bmatrix} - \begin{bmatrix}\mu_1\\\mu_2\end{bmatrix}\right)^{\mathsf{T}}\begin{bmatrix}\sigma_1^2 & 0\\0 & \sigma_2^2\end{bmatrix}^{-1}\left(\begin{bmatrix}w\\h\end{bmatrix} - \begin{bmatrix}\mu_1\\\mu_2\end{bmatrix}\right)\right)$$

$$p(\mathbf{y}) = \frac{1}{2\pi |\mathbf{D}|} \exp\left(-\frac{1}{2}(\mathbf{y} - \boldsymbol{\mu})^{\top} \mathbf{D}^{-1}(\mathbf{y} - \boldsymbol{\mu})\right)$$

$$p(\mathbf{y}) = \frac{1}{2\pi \left|\mathbf{D}\right|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu})^{\mathsf{T}}\mathbf{D}^{-1}(\mathbf{y}-\boldsymbol{\mu})\right)$$

$$p(\mathbf{y}) = \frac{1}{2\pi |\mathbf{D}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{R}^{\top}\mathbf{y} - \mathbf{R}^{\top}\boldsymbol{\mu})^{\top}\mathbf{D}^{-1}(\mathbf{R}^{\top}\mathbf{y} - \mathbf{R}^{\top}\boldsymbol{\mu})\right)$$

$$p(\mathbf{y}) = \frac{1}{2\pi |\mathbf{D}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu})^{\mathsf{T}} \mathbf{R} \mathbf{D}^{-1} \mathbf{R}^{\mathsf{T}} (\mathbf{y}-\boldsymbol{\mu})\right)$$

this gives a covariance matrix:

$$\mathbf{C}^{-1} = \mathbf{R} \mathbf{D}^{-1} \mathbf{R}^{\top}$$

$$p(\mathbf{y}) = \frac{1}{2\pi |\mathbf{C}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu})^{\top} \mathbf{C}^{-1}(\mathbf{y}-\boldsymbol{\mu})\right)$$

this gives a covariance matrix:

 $\mathbf{C} = \mathbf{R} \mathbf{D} \mathbf{R}^{\top}$

Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$
Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

2. Scaling a Gaussian leads to a Gaussian.

Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

2. Scaling a Gaussian leads to a Gaussian.

$$y \sim \mathcal{N}(\mu, \sigma^2)$$

Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

2. Scaling a Gaussian leads to a Gaussian.

$$y \sim \mathcal{N}\left(\mu,\sigma^2\right)$$

$$wy \sim \mathcal{N}\left(w\mu, w^2\sigma^2\right)$$

Multivariate Consequence

► If

Multivariate Consequence

• If $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ • And

 $\mathbf{y} = \mathbf{W}\mathbf{x}$

Multivariate Consequence

Multi-variate Gaussians

- We will consider a Gaussian with a particular structure of covariance matrix.
- Generate a single sample from this 25 dimensional Gaussian distribution, $\mathbf{f} = [f_1, f_2 \dots f_{25}]$.
- We will plot these points against their index.

(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap *i*showing correlations between dimensions.

(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap *i*showing correlations between dimensions.

(b) colormap showing correlations between dimensions.

(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap showing correlations between dimensions.

(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap showing correlations between dimensions.

0.8 0.6 0.4 0.2

(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap showing correlations between dimensions.

(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap showing correlations between dimensions.

The single contour of the Gaussian density represents the joint distribution, p(f₁, f₂).

- ► The single contour of the Gaussian density represents the joint distribution, p(f₁, f₂).
- We observe that $f_1 = -0.313$.

- ► The single contour of the Gaussian density represents the joint distribution, p(f₁, f₂).
- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_2|f_1 = -0.313)$.

- ► The single contour of the Gaussian density represents the joint distribution, p(f₁, f₂).
- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_2|f_1 = -0.313)$.

Prediction with Correlated Gaussians

- ▶ Prediction of *f*₂ from *f*₁ requires *conditional density*.
- Conditional density is *also* Gaussian.

$$p(f_2|f_1) = \mathcal{N}\left(f_2|\frac{k_{1,2}}{k_{1,1}}f_1, k_{2,2} - \frac{k_{1,2}^2}{k_{1,1}}\right)$$

where covariance of joint density is given by

$$\mathbf{K} = \begin{bmatrix} k_{1,1} & k_{1,2} \\ k_{2,1} & k_{2,2} \end{bmatrix}$$

The single contour of the Gaussian density represents the joint distribution, p(f₁, f₅).

- The single contour of the Gaussian density represents the joint distribution, p(f₁, f₅).
- We observe that $f_1 = -0.313$.

- The single contour of the Gaussian density represents the joint distribution, p(f₁, f₅).
- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_5|f_1 = -0.313)$.

- The single contour of the Gaussian density represents the joint distribution, p(f₁, f₅).
- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_5|f_1 = -0.313)$.

Prediction with Correlated Gaussians

- Prediction of f_{*} from f requires multivariate *conditional density*.
- Multivariate conditional density is *also* Gaussian.

$$p(\mathbf{f}_*|\mathbf{f}) = \mathcal{N}\left(\mathbf{f}_*|\mathbf{K}_{*,f}\mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1}\mathbf{f},\mathbf{K}_{*,*} - \mathbf{K}_{*,f}\mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1}\mathbf{K}_{\mathbf{f},*}\right)$$

Here covariance of joint density is given by

$$\mathbf{K} = \begin{bmatrix} \mathbf{K}_{f,f} & \mathbf{K}_{*,f} \\ \mathbf{K}_{f,*} & \mathbf{K}_{*,*} \end{bmatrix}$$

Prediction with Correlated Gaussians

- Prediction of f_{*} from f requires multivariate *conditional density*.
- Multivariate conditional density is *also* Gaussian.

$$p(\mathbf{f}_*|\mathbf{f}) = \mathcal{N}\left(\mathbf{f}_*|\boldsymbol{\mu}, \boldsymbol{\Sigma}\right)$$
$$\boldsymbol{\mu} = \mathbf{K}_{*,f} \mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1} \mathbf{f}$$
$$\boldsymbol{\Sigma} = \mathbf{K}_{*,*} - \mathbf{K}_{*,f} \mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1} \mathbf{K}_{\mathbf{f},*}$$
$$\blacktriangleright \text{ Here covariance of joint density is given by}$$

$$\mathbf{K} = \begin{bmatrix} \mathbf{K}_{f,f} & \mathbf{K}_{*,f} \\ \mathbf{K}_{f,*} & \mathbf{K}_{*,*} \end{bmatrix}$$

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{2\ell^2}\right)$$

- Covariance matrix is built using the *inputs* to the function x.
- For the example above it was based on Euclidean distance.
- The covariance function is also know as a kernel.

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{2\ell^2}\right)$$

- Covariance matrix is built using the *inputs* to the function x.
- For the example above it was based on Euclidean distance.
- The covariance function is also know as a kernel.

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_1 = -3.0, x_1 = -3.0$$

$$k_{1,1} = 1.00 \times \exp\left(-\frac{(-3.0 - -3.0)^2}{2 \times 2.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_1 = -3.0, x_1 = -3.0$$

$$k_{1,1} = 1.00 \times \exp\left(-\frac{(-3.0 - -3.0)^2}{2 \times 2.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{2} = 1.20, x_{1} = -3.0$$

$$k_{2,1} = 1.00 \times \exp\left(-\frac{(1.20 - 3.0)^{2}}{2 \times 2.00^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{2} = 1.20, x_{1} = -3.0$$

$$k_{2,1} = 1.00 \times \exp\left(-\frac{(1.20 - 3.0)^{2}}{2 \times 2.00^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_1 = -3.0$$

$$k_{2,1} = 1.00 \times \exp\left(-\frac{(1.20 - 3.0)^2}{2 \times 2.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_2 = 1.20$$

$$k_{2,2} = 1.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 2.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_2 = 1.20$$

$$k_{2,2} = 1.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 2.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_1 = -3.0$$

$$k_{3,1} = 1.00 \times \exp\left(-\frac{(1.40 - -3.0)^2}{2 \times 2.00^2}\right)$$
Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{3} = 1.40, x_{1} = -3.0$$

$$k_{3,1} = 1.00 \times \exp\left(-\frac{(1.40 - 3.0)^{2}}{2 \times 2.00^{2}}\right)$$

$$0.0889$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_1 = -3.0$$

$$k_{3,1} = 1.00 \times \exp\left(-\frac{(1.40 - 3.0)^2}{2 \times 2.00^2}\right)$$

$$0.0889$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 1.00 \times \exp\left(-\frac{(1.40 - 1.20)^2}{2 \times 2.00^2}\right)$$

$$0.0889$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 1.00 \times \exp\left(-\frac{(1.40 - 1.20)^2}{2 \times 2.00^2}\right)$$

$$0.0889$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 1.00 \times \exp\left(-\frac{(1.40 - 1.20)^2}{2 \times 2.00^2}\right)$$

$$0.0889 \quad 0.995$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{3} = 1.40, x_{3} = 1.40$$

$$k_{3,3} = 1.00 \times \exp\left(-\frac{(1.40 - 1.40)^{2}}{2 \times 2.00^{2}}\right)$$

$$0.0889 \quad 0.995$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_3 = 1.40$$

$$k_{3,3} = 1.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 2.00^2}\right)$$

$$1.00$$

$$1.00 \quad 0.110 \quad 0.0889$$

$$0.995$$

$$1.00$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_1 = -3, x_1 = -3$$

$$k_{1,1} = 1.0 \times \exp\left(-\frac{(-3--3)^2}{2 \times 2.0^2}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{||x_{i} - x_{j}||^{2}}{2\ell^{2}}\right)$$

$$x_{1} = -3, x_{1} = -3$$

$$k_{1,1} = 1.0 \times \exp\left(-\frac{(-3 - 3)^{2}}{2 \times 2.0^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{||x_{i} - x_{j}||^{2}}{2\ell^{2}}\right)$$

$$x_{2} = 1.2, x_{1} = -3$$

$$k_{2,1} = 1.0 \times \exp\left(-\frac{(1.2 - 3)^{2}}{2 \times 2.0^{2}}\right)$$

Where did this covariance matrix come from?

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{||x_{i} - x_{j}||^{2}}{2\ell^{2}}\right)$$

$$x_{2} = 1.2, x_{1} = -3$$

$$k_{2,1} = 1.0 \times \exp\left(-\frac{(1.2 - 3)^{2}}{2 \times 2.0^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{||x_{i}-x_{j}||^{2}}{2\ell^{2}}\right)$$

$$x_{2} = 1.2, x_{2} = 1.2$$

$$k_{2,2} = 1.0 \times \exp\left(-\frac{(1.2-1.2)^{2}}{2\times 2.0^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{||x_{i} - x_{j}||^{2}}{2\ell^{2}}\right)$$

$$x_{2} = 1.2, x_{2} = 1.2$$

$$k_{2,2} = 1.0 \times \exp\left(-\frac{(1.2 - 1.2)^{2}}{2 \times 2.0^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{||x_{i} - x_{j}||^{2}}{2\ell^{2}}\right)$$

$$x_{3} = 1.4, x_{1} = -3$$

$$k_{3,1} = 1.0 \times \exp\left(-\frac{(1.4 - -3)^{2}}{2 \times 2.0^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_1 = -3$$

$$k_{3,1} = 1.0 \times \exp\left(-\frac{(1.4 - 3)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.11$$

$$0.11 \quad 1.0$$

$$0.089$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{3} = 1.4, x_{1} = -3$$

$$k_{3,1} = 1.0 \times \exp\left(-\frac{(1.4 - 3)^{2}}{2 \times 2.0^{2}}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 \\ 0.11 & 1.0 \\ 0.089 \end{bmatrix}$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{3} = 1.4, x_{2} = 1.2$$

$$k_{3,2} = 1.0 \times \exp\left(-\frac{(1.4 - 1.2)^{2}}{2 \times 2.0^{2}}\right)$$

$$1.0 = 0.11 = 0.089$$

$$0.11 = 1.0$$

$$0.089$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_2 = 1.2$$

$$k_{3,2} = 1.0 \times \exp\left(-\frac{(1.4 - 1.2)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 \\ 0.11 & 1.0 \\ 0.089 & 1.0 \end{bmatrix}$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_2 = 1.2$$

$$k_{3,2} = 1.0 \times \exp\left(-\frac{(1.4 - 1.2)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 \\ 0.11 & 1.0 & 1.0 \\ 0.089 & 1.0 \end{bmatrix}$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_3 = 1.4$$

$$k_{3,3} = 1.0 \times \exp\left(-\frac{(1.4 - 1.4)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 \\ 0.11 & 1.0 & 1.0 \\ 0.089 & 1.0 \end{bmatrix}$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{3} = 1.4, x_{3} = 1.4$$

$$k_{3,3} = 1.0 \times \exp\left(-\frac{(1.4 - 1.4)^{2}}{2 \times 2.0^{2}}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 \\ 0.11 & 1.0 & 1.0 \\ 0.089 & 1.0 & 1.0 \end{bmatrix}$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_1 = -3$$

$$k_{4,1} = 1.0 \times \exp\left(-\frac{(2.0 - 3)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 \\ 0.11 & 1.0 & 1.0 \\ 0.089 & 1.0 & 1.0 \end{bmatrix}$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_1 = -3$$

$$k_{4,1} = 1.0 \times \exp\left(-\frac{(2.0 - 3)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.011 \quad 0.089$$

$$1.0 \quad 1.0$$

$$0.044$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_1 = -3$$

$$k_{4,1} = 1.0 \times \exp\left(-\frac{(2.0 - 3)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.11 \quad 0.089 \quad 0.044$$

$$0.11 \quad 1.0 \quad 1.0$$

$$0.044$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_2 = 1.2$$

$$k_{4,2} = 1.0 \times \exp\left(-\frac{(2.0 - 1.2)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.11 \quad 0.089 \quad 0.044$$

$$0.11 \quad 1.0 \quad 1.0$$

$$0.044$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_2 = 1.2$$

$$k_{4,2} = 1.0 \times \exp\left(-\frac{(2.0 - 1.2)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.044$$

$$0.11 \quad 1.0 \quad 1.0$$

$$0.044 \quad 0.92$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_2 = 1.2$$

$$k_{4,2} = 1.0 \times \exp\left(-\frac{(2.0 - 1.2)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.11 \quad 0.089 \quad 0.044$$

$$0.11 \quad 1.0 \quad 0.92$$

$$0.089 \quad 1.0 \quad 1.0$$

$$0.044 \quad 0.92$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_3 = 1.4$$

$$k_{4,3} = 1.0 \times \exp\left(-\frac{(2.0 - 1.4)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 & 0.044 \\ 0.11 & 1.0 & 1.0 & 0.92 \\ 0.089 & 1.0 & 1.0 \\ 0.044 & 0.92 \end{bmatrix}$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_3 = 1.4$$

$$k_{4,3} = 1.0 \times \exp\left(-\frac{(2.0 - 1.4)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.11 \quad 0.089 \quad 0.044$$

$$0.11 \quad 1.0 \quad 0.92$$

$$0.089 \quad 1.0 \quad 1.0$$

$$0.044 \quad 0.92 \quad 0.96$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_3 = 1.4$$

$$k_{4,3} = 1.0 \times \exp\left(-\frac{(2.0 - 1.4)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 & 0.044 \\ 0.11 & 1.0 & 1.0 & 0.92 \\ 0.089 & 1.0 & 1.0 & 0.96 \\ 0.044 & 0.92 & 0.96 \end{bmatrix}$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_4 = 2.0$$

$$k_{4,4} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.11 \quad 0.089 \quad 0.044$$

$$0.11 \quad 1.0 \quad 0.92$$

$$0.089 \quad 1.0 \quad 1.0 \quad 0.96$$

$$0.044 \quad 0.92 \quad 0.96$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_4 = 2.0$$

$$k_{4,4} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.11 \quad 0.089 \quad 0.044$$

$$0.11 \quad 1.0 \quad 0.92$$

$$0.089 \quad 1.0 \quad 1.0 \quad 0.96$$

$$0.044 \quad 0.92 \quad 0.96 \quad 1.0$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_1 = -3.0, x_1 = -3.0$$

$$k_{1,1} = 4.00 \times \exp\left(-\frac{(-3.0 - -3.0)^2}{2 \times 5.00^2}\right)$$
Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{1} = -3.0, x_{1} = -3.0$$

$$k_{1,1} = 4.00 \times \exp\left(-\frac{(-3.0 - 3.0)^{2}}{2\times 5.00^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_1 = -3.0$$

$$k_{2,1} = 4.00 \times \exp\left(-\frac{(1.20 - 3.0)^2}{2 \times 5.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{2} = 1.20, x_{1} = -3.0$$

$$k_{2,1} = 4.00 \times \exp\left(-\frac{(1.20 - 3.0)^{2}}{2\times 5.00^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{2} = 1.20, x_{1} = -3.0$$

$$k_{2,1} = 4.00 \times \exp\left(-\frac{(1.20 - 3.0)^{2}}{2 \times 5.00^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_2 = 1.20$$

$$k_{2,2} = 4.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 5.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_2 = 1.20$$

$$k_{2,2} = 4.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 5.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{3} = 1.40, x_{1} = -3.0$$

$$k_{3,1} = 4.00 \times \exp\left(-\frac{(1.40 - -3.0)^{2}}{2\times 5.00^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{3} = 1.40, x_{1} = -3.0$$

$$k_{3,1} = 4.00 \times \exp\left(-\frac{(1.40 - 3.0)^{2}}{2\times 5.00^{2}}\right)$$

$$2.72$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_1 = -3.0$$

$$k_{3,1} = 4.00 \times \exp\left(-\frac{(1.40 - 3.0)^2}{2 \times 5.00^2}\right)$$

$$2.72$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 4.00 \times \exp\left(-\frac{(1.40 - 1.20)^2}{2 \times 5.00^2}\right)$$

$$2.72$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 4.00 \times \exp\left(-\frac{(1.40 - 1.20)^2}{2 \times 5.00^2}\right)$$

$$2.72$$

$$4.00$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 4.00 \times \exp\left(-\frac{(1.40 - 1.20)^2}{2 \times 5.00^2}\right)$$

$$2.72 \quad 4.00$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_3 = 1.40$$

$$k_{3,3} = 4.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 5.00^2}\right)$$

$$2.72 \quad 4.00$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_3 = 1.40$$

$$k_{3,3} = 4.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 5.00^2}\right)$$

$$2.72 \quad 4.00 \quad 4.00$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

The Gaussian Density

Covariance from Basis Functions

Basis Function Representations

Basis Function Form

Radial basis functions commonly have the form

$$\phi_k(\mathbf{x}_i) = \exp\left(-\frac{\left|\mathbf{x}_i - \boldsymbol{\mu}_k\right|^2}{2\ell^2}\right)$$

Figure : A set of radial basis functions with width $\ell = 2$ and location parameters $\mu = [-4 \ 0 \ 4]^{\top}$.

Represent a function by a linear sum over a basis,

$$f(\mathbf{x}_{i,:};\mathbf{w}) = \sum_{k=1}^{M} w_k \phi_k(\mathbf{x}_{i,:}), \qquad (1)$$

• Here: *M* basis functions and $\phi_k(\cdot)$ is *k*th basis function and

$$\mathbf{w} = [w_1, \ldots, w_M]^\top.$$

• For standard linear model: $\phi_k(\mathbf{x}_{i,:}) = x_{i,k}$.

Random Functions

Functions derived using:

$$f(x) = \sum_{k=1}^{M} w_k \phi_k(x),$$

where **W** is sampled from a Gaussian density,

$$w_k \sim \mathcal{N}(0, \alpha)$$
.

х

Figure : Functions sampled using the basis set from figure 3. Each line is a separate sample, generated by a weighted sum of the basis set. The weights, **w** are sampled from a Gaussian density with variance $\alpha = 1$.

Use matrix notation to write function,

$$f(\mathbf{x}_i; \mathbf{w}) = \sum_{k=1}^{M} w_k \phi_k(\mathbf{x}_i)$$

Use matrix notation to write function,

$$f(\mathbf{x}_i; \mathbf{w}) = \sum_{k=1}^{M} w_k \phi_k(\mathbf{x}_i)$$

computed at training data gives a vector

 $f = \Phi w$.

Use matrix notation to write function,

$$f(\mathbf{x}_i; \mathbf{w}) = \sum_{k=1}^{M} w_k \phi_k(\mathbf{x}_i)$$

computed at training data gives a vector

 $f = \Phi w$.

w and **f** are only related by an *inner product*.

Use matrix notation to write function,

$$f(\mathbf{x}_i; \mathbf{w}) = \sum_{k=1}^{M} w_k \phi_k(\mathbf{x}_i)$$

computed at training data gives a vector

 $f = \Phi w$.

w and f are only related by an *inner product*.

 $\mathbf{\Phi} \in \mathfrak{R}^{n \times p}$ is a design matrix

Use matrix notation to write function,

$$f(\mathbf{x}_i; \mathbf{w}) = \sum_{k=1}^{M} w_k \phi_k(\mathbf{x}_i)$$

computed at training data gives a vector

 $f = \Phi w$.

w and f are only related by an *inner product*.

 $\mathbf{\Phi} \in \mathfrak{R}^{n \times p}$ is a design matrix

 Φ is fixed and non-stochastic for a given training set.

Use matrix notation to write function,

$$f(\mathbf{x}_i; \mathbf{w}) = \sum_{k=1}^{M} w_k \phi_k(\mathbf{x}_i)$$

computed at training data gives a vector $\mathbf{f} = \mathbf{\Phi} \mathbf{w}$

w and f are only related by an *inner product*.

 $\mathbf{\Phi} \in \mathfrak{R}^{n \times p}$ is a design matrix

 Φ is fixed and non-stochastic for a given training set.

f is Gaussian distributed.

We have

$$\langle \mathbf{f} \rangle = \mathbf{\Phi} \langle \mathbf{w} \rangle.$$

We have

$$\langle \mathbf{f} \rangle = \mathbf{\Phi} \langle \mathbf{w} \rangle.$$

Prior mean of w was zero giving

$$\langle \mathbf{f} \rangle = \mathbf{0}.$$

We have

$$\langle \mathbf{f} \rangle = \mathbf{\Phi} \langle \mathbf{w} \rangle.$$

Prior mean of w was zero giving

$$\langle \mathbf{f} \rangle = \mathbf{0}.$$

Prior covariance of **f** is

$$\mathbf{K} = \left\langle \mathbf{f} \mathbf{f}^{\top} \right\rangle - \left\langle \mathbf{f} \right\rangle \left\langle \mathbf{f} \right\rangle^{\top}$$

Expectations

We have

$$\langle \mathbf{f} \rangle = \mathbf{\Phi} \langle \mathbf{w} \rangle.$$

Prior mean of w was zero giving

$$\left\langle f\right\rangle =0.$$

Prior covariance of f is

$$\mathbf{K} = \left\langle \mathbf{f} \mathbf{f}^{\top} \right\rangle - \left\langle \mathbf{f} \right\rangle \left\langle \mathbf{f} \right\rangle^{\top}$$
$$\left\langle \mathbf{f} \mathbf{f}^{\top} \right\rangle = \mathbf{\Phi} \left\langle \mathbf{w} \mathbf{w}^{\top} \right\rangle \mathbf{\Phi}^{\top},$$

giving

$$\mathbf{K} = \gamma' \mathbf{\Phi} \mathbf{\Phi}^{\mathsf{T}}.$$

► The prior covariance between two points **x**_{*i*} and **x**_{*j*} is

$$k(\mathbf{x}_i, \mathbf{x}_j) = \phi_{:} (\mathbf{x}_i)^{\top} \phi_{:} (\mathbf{x}_j),$$

► The prior covariance between two points **x**_{*i*} and **x**_{*j*} is

$$k(\mathbf{x}_i, \mathbf{x}_j) = \phi_{:} (\mathbf{x}_i)^{\top} \phi_{:} (\mathbf{x}_j),$$

or in sum notation

$$k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) = \gamma' \sum_{\ell}^{M} \phi_{\ell}\left(\mathbf{x}_{i}\right) \phi_{\ell}\left(\mathbf{x}_{j}\right)$$

• The prior covariance between two points **x**_{*i*} and **x**_{*j*} is

$$k(\mathbf{x}_i, \mathbf{x}_j) = \phi_{:} (\mathbf{x}_i)^{\top} \phi_{:} (\mathbf{x}_j),$$

or in sum notation

$$k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) = \gamma' \sum_{\ell}^{M} \phi_{\ell}\left(\mathbf{x}_{i}\right) \phi_{\ell}\left(\mathbf{x}_{j}\right)$$

For the radial basis used this gives

► The prior covariance between two points **x**_{*i*} and **x**_{*j*} is

$$k(\mathbf{x}_i, \mathbf{x}_j) = \phi_{:} (\mathbf{x}_i)^{\top} \phi_{:} (\mathbf{x}_j),$$

or in sum notation

$$k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) = \gamma' \sum_{\ell}^{M} \phi_{\ell}\left(\mathbf{x}_{i}\right) \phi_{\ell}\left(\mathbf{x}_{j}\right)$$

For the radial basis used this gives

$$k\left(\mathbf{x}_{i},\mathbf{x}_{j}\right) = \gamma' \sum_{k=1}^{M} \exp\left(-\frac{\left|\mathbf{x}_{i}-\boldsymbol{\mu}_{k}\right|^{2}+\left|\mathbf{x}_{j}-\boldsymbol{\mu}_{k}\right|^{2}}{2\ell^{2}}\right).$$

RBF Basis Functions

$$k(\mathbf{x}, \mathbf{x}') = \alpha \boldsymbol{\phi}(\mathbf{x})^\top \boldsymbol{\phi}(\mathbf{x}')$$

$$\phi_i(x) = \exp\left(-\frac{\|x - \mu_i\|_2^2}{\ell^2}\right)$$
$$\mu = \begin{bmatrix} -1\\0\\1 \end{bmatrix}$$

RBF Basis Functions

$$k(\mathbf{x}, \mathbf{x}') = \alpha \boldsymbol{\phi}(\mathbf{x})^\top \boldsymbol{\phi}(\mathbf{x}')$$

Selecting Number and Location of Basis

- Need to choose
 - 1. location of centers
Selecting Number and Location of Basis

- Need to choose
 - 1. location of centers
 - 2. number of basis functions

Selecting Number and Location of Basis

- Need to choose
 - 1. location of centers
 - 2. number of basis functions
- Consider uniform spacing over a region:

$$k(x_i, x_j) = \gamma \Delta \sum_{k=1}^{M} \exp\left(-\frac{x_i^2 + x_j^2 - 2\mu_k(x_i + x_j) + 2\mu_k^2}{2\ell^2}\right),$$

Restrict analysis to 1-D input, *x*.

Uniform Basis Functions

Set each center location to

$$\mu_k = a + \Delta \mu \cdot (k-1).$$

Uniform Basis Functions

Set each center location to

$$\mu_k = a + \Delta \mu \cdot (k-1).$$

Specify the basis functions in terms of their indices,

$$k(x_i, x_j) = \gamma \Delta \mu \sum_{k=0}^{M-1} \exp\left(-\frac{x_i^2 + x_j^2}{2\ell^2} - \frac{2(a + \Delta \mu \cdot k)(x_i + x_j) + 2(a + \Delta \mu \cdot k)^2}{2\ell^2}\right)$$

Infinite Basis Functions

• Take
$$\mu_0 = a$$
 and $\mu_M = b$ so $b = a + \Delta \mu \cdot (M - 1)$.

Infinite Basis Functions

- Take $\mu_0 = a$ and $\mu_M = b$ so $b = a + \Delta \mu \cdot (M 1)$.
- Take limit as $\Delta \mu \rightarrow 0$ so $M \rightarrow \infty$

Infinite Basis Functions

- Take $\mu_0 = a$ and $\mu_M = b$ so $b = a + \Delta \mu \cdot (M 1)$.
- Take limit as $\Delta \mu \rightarrow 0$ so $M \rightarrow \infty$

$$\begin{split} k(x_i, x_j) = &\gamma \int_a^b \exp\left(-\frac{x_i^2 + x_j^2}{2\ell^2} + \frac{2\left(\mu - \frac{1}{2}\left(x_i + x_j\right)\right)^2 - \frac{1}{2}\left(x_i + x_j\right)^2}{2\ell^2}\right) d\mu, \end{split}$$

where we have used $k \cdot \Delta \mu \rightarrow \mu$.

Result

Performing the integration leads to

$$k(x_i, x_j) = \gamma \frac{\sqrt{\pi \ell^2}}{2} \exp\left(-\frac{\left(x_i - x_j\right)^2}{4\ell^2}\right) \\ \times \left[\exp\left(\frac{\left(b - \frac{1}{2}\left(x_i + x_j\right)\right)}{\ell}\right) - \exp\left(\frac{\left(a - \frac{1}{2}\left(x_i + x_j\right)\right)}{\ell}\right) \right],$$

Result

Performing the integration leads to

$$k(x_i, x_j) = \gamma \frac{\sqrt{\pi \ell^2}}{2} \exp\left(-\frac{(x_i - x_j)^2}{4\ell^2}\right) \\ \times \left[\operatorname{erf}\left(\frac{\left(b - \frac{1}{2}\left(x_i + x_j\right)\right)}{\ell}\right) - \operatorname{erf}\left(\frac{\left(a - \frac{1}{2}\left(x_i + x_j\right)\right)}{\ell}\right) \right],$$

• Now take limit as $a \to -\infty$ and $b \to \infty$

Result

Performing the integration leads to

$$k(x_i, x_j) = \gamma \frac{\sqrt{\pi \ell^2}}{2} \exp\left(-\frac{\left(x_i - x_j\right)^2}{4\ell^2}\right) \\ \times \left[\operatorname{erf}\left(\frac{\left(b - \frac{1}{2}\left(x_i + x_j\right)\right)}{\ell}\right) - \operatorname{erf}\left(\frac{\left(a - \frac{1}{2}\left(x_i + x_j\right)\right)}{\ell}\right) \right],$$

• Now take limit as $a \to -\infty$ and $b \to \infty$

$$k(x_i, x_j) = \alpha \exp\left(-\frac{(x_i - x_j)^2}{4\ell^2}\right).$$

where $\alpha = \gamma \sqrt{\pi \ell^2}$.

 An RBF model with infinite basis functions is a Gaussian process.

- An RBF model with infinite basis functions is a Gaussian process.
- The covariance function is given by the exponentiated quadratic covariance function.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{(x_i - x_j)^2}{4\ell^2}\right).$$

where $\alpha = \gamma \sqrt{\pi \ell^2}$.

Infinite Feature Space

- An RBF model with infinite basis functions is a Gaussian process.
- The covariance function is the exponentiated quadratic.
- Note: The functional form for the covariance function and basis functions are similar.
 - this is a special case,
 - in general they are very different

Similar results can obtained for multi-dimensional input models Williams (1998); Neal (1996).

- R. M. Neal. Bayesian Learning for Neural Networks. Springer, 1996. Lecture Notes in Statistics 118.
- C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, Cambridge, MA, 2006. [Google Books] .
- C. K. I. Williams. Computation with infinite neural networks. Neural Computation, 10(5):1203–1216, 1998.