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The Gaussian Density

I Perhaps the most common probability density.

p(y|µ, σ2) =
1

√

2πσ2
exp

(
−

(y − µ)2

2σ2

)
4
= N

(
y|µ, σ2

)
I The Gaussian density.
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The Gaussian PDF with µ = 1.7 and variance σ2 = 0.0225. Mean
shown as red line. It could represent the heights of a
population of students.



Gaussian Density

N

(
y|µ, σ2

)
=

1
√

2πσ2
exp

(
−

(y − µ)2

2σ2

)
σ2 is the variance of the density and µ is
the mean.



Two Important Gaussian Properties

Sum of Gaussians

I Sum of Gaussian variables is also Gaussian.

yi ∼ N
(
µi, σ

2
i

)

And the sum is distributed as

n∑
i=1

yi ∼ N

 n∑
i=1

µi,
n∑

i=1

σ2
i


(Aside: As sum increases, sum of non-Gaussian, finite
variance variables is also Gaussian [central limit theorem].)
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Two Important Gaussian Properties

Scaling a Gaussian

I Scaling a Gaussian leads to a Gaussian.

y ∼ N
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µ, σ2

)
And the scaled density is distributed as
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Linear Function
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A linear regression between x and y.



Regression Examples

I Predict a real value, yi given some inputs xi.
I Predict quality of meat given spectral measurements

(Tecator data).
I Radiocarbon dating, the C14 calibration curve: predict age

given quantity of C14 isotope.
I Predict quality of different Go or Backgammon moves

given expert rated training data.



y = mx + c
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y = mx + c

point 1: x = 1, y = 3

3 = m + c

point 2: x = 3, y = 1

1 = 3m + c

point 3: x = 2, y = 2.5

2.5 = 2m + c



y = mx + c + ε

point 1: x = 1, y = 3

3 = m + c + ε1

point 2: x = 3, y = 1

1 = 3m + c + ε2

point 3: x = 2, y = 2.5

2.5 = 2m + c + ε3



Underdetermined System

What about two unknowns and
one observation?

y1 = mx1 + c
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Underdetermined System

Can compute m given c.

m =
y1 − c

x
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Underdetermined System

Can compute m given c.

c = 1.75 =⇒ m = 1.25
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Underdetermined System

Can compute m given c.

c = −0.777 =⇒ m = 3.78
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Underdetermined System

Can compute m given c.

c = −4.01 =⇒ m = 7.01
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Underdetermined System

Can compute m given c.

c = −0.718 =⇒ m = 3.72
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Underdetermined System

Can compute m given c.

c = 2.45 =⇒ m = 0.545
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Underdetermined System

Can compute m given c.

c = −0.657 =⇒ m = 3.66
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Underdetermined System

Can compute m given c.

c = −3.13 =⇒ m = 6.13
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Underdetermined System

Can compute m given c.

c = −1.47 =⇒ m = 4.47
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Underdetermined System

Can compute m given c.
Assume

c ∼ N (0, 4) ,

we find a distribution of solu-
tions.
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Probability for Under- and Overdetermined

I To deal with overdetermined introduced probability
distribution for ‘variable’, εi.

I For underdetermined system introduced probability
distribution for ‘parameter’, c.

I This is known as a Bayesian treatment.



Multivariate Prior Distributions

I For general Bayesian inference need multivariate priors.
I E.g. for multivariate linear regression:

yi =
∑

i

w jxi, j + εi

(where we’ve dropped c for convenience), we need a prior
over w.

I This motivates a multivariate Gaussian density.
I We will use the multivariate Gaussian to put a prior directly

on the function (a Gaussian process).
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on the function (a Gaussian process).



Prior Distribution

I Bayesian inference requires a prior on the parameters.
I The prior represents your belief before you see the data of

the likely value of the parameters.
I For linear regression, consider a Gaussian prior on the

intercept:
c ∼ N (0, α1)



Posterior Distribution

I Posterior distribution is found by combining the prior with
the likelihood.

I Posterior distribution is your belief after you see the data of
the likely value of the parameters.

I The posterior is found through Bayes’ Rule

p(c|y) =
p(y|c)p(c)

p(y)



Bayes Update
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Figure : A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.
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Figure : A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.



Stages to Derivation of the Posterior

I Multiply likelihood by prior
I they are “exponentiated quadratics”, the answer is always

also an exponentiated quadratic because
exp(a2) exp(b2) = exp(a2 + b2).

I Complete the square to get the resulting density in the
form of a Gaussian.

I Recognise the mean and (co)variance of the Gaussian. This
is the estimate of the posterior.



Multivariate Regression Likelihood

I Noise corrupted data point

yi = w>xi,: + εi

I Multivariate regression likelihood:

p(y|X,w) =
1

(2πσ2)n/2 exp

− 1
2σ2

n∑
i=1

(
yi −w>xi,:

)2


I Now use a multivariate Gaussian prior:

p(w) =
1

(2πα)
p
2

exp
(
−

1
2α

w>w
)
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Two Dimensional Gaussian

I Consider height, h/m and weight, w/kg.
I Could sample height from a distribution:

p(h) ∼ N (1.7, 0.0225)

I And similarly weight:

p(w) ∼ N (75, 36)



Height and Weight Models
p(

h)

h/m

p(
w

)

w/kg

Gaussian distributions for height and weight.
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Independence Assumption

I This assumes height and weight are independent.

p(h,w) = p(h)p(w)

I In reality they are dependent (body mass index) = w
h2 .
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Independent Gaussians

p(w, h) = p(w)p(h)



Independent Gaussians

p(w, h) =
1√

2πσ2
1

√
2πσ2

2

exp

−1
2

 (w − µ1)2

σ2
1

+
(h − µ2)2

σ2
2





Independent Gaussians

p(w, h) =
1

2π
√
σ2

1σ
2
2

exp

−1
2

([
w
h

]
−

[
µ1
µ2

])> [
σ2

1 0
0 σ2

2

]−1 ([
w
h

]
−

[
µ1
µ2

])



Independent Gaussians

p(y) =
1

2π |D|
exp

(
−

1
2

(y − µ)>D−1(y − µ)
)



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

p(y) =
1

2π |D|
1
2

exp
(
−

1
2

(y − µ)>D−1(y − µ)
)



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

p(y) =
1

2π |D|
1
2

exp
(
−

1
2

(R>y − R>µ)>D−1(R>y − R>µ)
)



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

p(y) =
1

2π |D|
1
2

exp
(
−

1
2

(y − µ)>RD−1R>(y − µ)
)

this gives a covariance matrix:

C−1 = RD−1R>



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

p(y) =
1

2π |C|
1
2

exp
(
−

1
2

(y − µ)>C−1(y − µ)
)

this gives a covariance matrix:

C = RDR>



Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.

yi ∼ N
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µi, σ

2
i

)

n∑
i=1

yi ∼ N

 n∑
i=1

µi,
n∑

i=1

σ2
i


2. Scaling a Gaussian leads to a Gaussian.

y ∼ N
(
µ, σ2

)
wy ∼ N

(
wµ,w2σ2

)
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Sampling a Function

Multi-variate Gaussians

I We will consider a Gaussian with a particular structure of
covariance matrix.

I Generate a single sample from this 25 dimensional
Gaussian distribution, f =

[
f1, f2 . . . f25

]
.

I We will plot these points against their index.
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Figure : A sample from a 25 dimensional Gaussian distribution.
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Prediction of f2 from f1
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I The single contour of the Gaussian density represents the
joint distribution, p( f1, f2).

I We observe that f1 = −0.313.
I Conditional density: p( f2| f1 = −0.313).
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Prediction with Correlated Gaussians

I Prediction of f2 from f1 requires conditional density.
I Conditional density is also Gaussian.

p( f2| f1) = N

 f2|
k1,2

k1,1
f1, k2,2 −

k2
1,2

k1,1


where covariance of joint density is given by

K =

[
k1,1 k1,2
k2,1 k2,2

]
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joint distribution, p( f1, f5).
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Prediction with Correlated Gaussians

I Prediction of f∗ from f requires multivariate conditional
density.

I Multivariate conditional density is also Gaussian.

p(f∗|f) = N
(
f∗|K∗,fK−1

f,f f,K∗,∗ −K∗,fK−1
f,f Kf,∗

)

I Here covariance of joint density is given by

K =

[
Kf,f K∗,f
Kf,∗ K∗,∗

]



Prediction with Correlated Gaussians

I Prediction of f∗ from f requires multivariate conditional
density.

I Multivariate conditional density is also Gaussian.

p(f∗|f) = N
(
f∗|µ,Σ

)
µ = K∗,fK−1

f,f f

Σ = K∗,∗ −K∗,fK−1
f,f Kf,∗

I Here covariance of joint density is given by

K =

[
Kf,f K∗,f
Kf,∗ K∗,∗

]



Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k (x, x′) = α exp

−‖x − x′‖22
2`2


I Covariance matrix is

built using the inputs to
the function x.

I For the example above it
was based on Euclidean
distance.

I The covariance function
is also know as a kernel.
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Covariance Functions
Where did this covariance matrix come from?

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x1 = −3.0, x1 = −3.0

k1,1 = 1.00 × exp
(
−

(−3.0−−3.0)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

1.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x1 = −3.0, x1 = −3.0

k1,1 = 1.00 × exp
(
−

(−3.0−−3.0)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

1.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x2 = 1.20, x1 = −3.0

k2,1 = 1.00 × exp
(
−

(1.20−−3.0)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

1.00

0.110

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x2 = 1.20, x1 = −3.0

k2,1 = 1.00 × exp
(
−

(1.20−−3.0)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

1.00 0.110

0.110

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x2 = 1.20, x1 = −3.0

k2,1 = 1.00 × exp
(
−

(1.20−−3.0)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

1.00 0.110

0.110

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x2 = 1.20, x2 = 1.20

k2,2 = 1.00 × exp
(
−

(1.20−1.20)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

1.00 0.110

0.110 1.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x2 = 1.20, x2 = 1.20

k2,2 = 1.00 × exp
(
−

(1.20−1.20)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

1.00 0.110

0.110 1.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x1 = −3.0

k3,1 = 1.00 × exp
(
−

(1.40−−3.0)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

1.00 0.110

0.110 1.00

0.0889

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x1 = −3.0

k3,1 = 1.00 × exp
(
−

(1.40−−3.0)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

1.00 0.110 0.0889

0.110 1.00

0.0889

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x1 = −3.0

k3,1 = 1.00 × exp
(
−

(1.40−−3.0)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

1.00 0.110 0.0889

0.110 1.00

0.0889

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x2 = 1.20

k3,2 = 1.00 × exp
(
−

(1.40−1.20)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

1.00 0.110 0.0889

0.110 1.00

0.0889 0.995

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x2 = 1.20

k3,2 = 1.00 × exp
(
−

(1.40−1.20)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

1.00 0.110 0.0889

0.110 1.00 0.995

0.0889 0.995

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x2 = 1.20

k3,2 = 1.00 × exp
(
−

(1.40−1.20)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

1.00 0.110 0.0889

0.110 1.00 0.995

0.0889 0.995

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x3 = 1.40

k3,3 = 1.00 × exp
(
−

(1.40−1.40)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

1.00 0.110 0.0889

0.110 1.00 0.995

0.0889 0.995 1.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x3 = 1.40

k3,3 = 1.00 × exp
(
−

(1.40−1.40)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x3 = 1.40

k3,3 = 1.00 × exp
(
−

(1.40−1.40)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x1 = −3, x1 = −3

k1,1 = 1.0 × exp
(
−

(−3−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x1 = −3, x1 = −3

k1,1 = 1.0 × exp
(
−

(−3−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x1 = −3

k2,1 = 1.0 × exp
(
−

(1.2−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0

0.11

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x1 = −3

k2,1 = 1.0 × exp
(
−

(1.2−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x1 = −3

k2,1 = 1.0 × exp
(
−

(1.2−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x2 = 1.2

k2,2 = 1.0 × exp
(
−

(1.2−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x2 = 1.2

k2,2 = 1.0 × exp
(
−

(1.2−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x1 = −3

k3,1 = 1.0 × exp
(
−

(1.4−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11 1.0

0.089

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x1 = −3

k3,1 = 1.0 × exp
(
−

(1.4−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0

0.089

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x1 = −3

k3,1 = 1.0 × exp
(
−

(1.4−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0

0.089

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x2 = 1.2

k3,2 = 1.0 × exp
(
−

(1.4−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0

0.089 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x2 = 1.2

k3,2 = 1.0 × exp
(
−

(1.4−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x2 = 1.2

k3,2 = 1.0 × exp
(
−

(1.4−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x3 = 1.4

k3,3 = 1.0 × exp
(
−

(1.4−1.4)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x3 = 1.4

k3,3 = 1.0 × exp
(
−

(1.4−1.4)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x1 = −3

k4,1 = 1.0 × exp
(
−

(2.0−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0 1.0

0.044

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x1 = −3

k4,1 = 1.0 × exp
(
−

(2.0−−3)2
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x4 = 2.0, x2 = 1.2

k4,2 = 1.0 × exp
(
−

(2.0−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0

0.044 0.92

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x2 = 1.2

k4,2 = 1.0 × exp
(
−

(2.0−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0

0.044 0.92

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x3 = 1.4

k4,3 = 1.0 × exp
(
−

(2.0−1.4)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0

0.044 0.92 0.96

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x3 = 1.4

k4,3 = 1.0 × exp
(
−

(2.0−1.4)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0 0.96

0.044 0.92 0.96

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x3 = 1.4

k4,3 = 1.0 × exp
(
−

(2.0−1.4)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?
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(
−
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Covariance Functions
Where did this covariance matrix come from?
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k4,4 = 1.0 × exp
(
−
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2×2.02

)



Covariance Functions
Where did this covariance matrix come from?
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= α exp
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2`2
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(−3.0−−3.0)2

2×5.002

)



Covariance Functions
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Covariance Functions
Where did this covariance matrix come from?
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Covariance Functions
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Covariance Functions
Where did this covariance matrix come from?
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81 4.00
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k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x1 = −3.0

k3,1 = 4.00 × exp
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−
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Covariance Functions
Where did this covariance matrix come from?
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(
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= α exp

(
−
||xi−x j||
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)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x1 = −3.0

k3,1 = 4.00 × exp
(
−

(1.40−−3.0)2

2×5.002
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Covariance Functions
Where did this covariance matrix come from?
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k3,2 = 4.00 × exp
(
−

(1.40−1.20)2
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Covariance Functions
Where did this covariance matrix come from?
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k3,2 = 4.00 × exp
(
−

(1.40−1.20)2
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Covariance Functions
Where did this covariance matrix come from?
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x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.
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k3,2 = 4.00 × exp
(
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Covariance Functions
Where did this covariance matrix come from?
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= α exp

(
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2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x3 = 1.40

k3,3 = 4.00 × exp
(
−

(1.40−1.40)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00 4.00

2.72 4.00 4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x3 = 1.40

k3,3 = 4.00 × exp
(
−

(1.40−1.40)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x3 = 1.40

k3,3 = 4.00 × exp
(
−

(1.40−1.40)2

2×5.002

)



Outline

The Gaussian Density

Covariance from Basis Functions

Basis Function Representations



Basis Function Form

Radial basis functions commonly have the form

φk (xi) = exp

−
∣∣∣xi − µk

∣∣∣2
2`2

 .

I Basis function
maps data into a
“feature space” in
which a linear sum
is a non linear
function.

0

0.5
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φ
(x

)

x
Figure : A set of radial basis functions with width
` = 2 and location parameters µ = [−4 0 4]>.



Basis Function Representations

I Represent a function by a linear sum over a basis,

f (xi,:; w) =

M∑
k=1

wkφk(xi,:), (1)

I Here: M basis functions and φk(·) is kth basis function and

w = [w1, . . . ,wM]> .

I For standard linear model: φk(xi,:) = xi,k.



Random Functions

Functions derived
using:

f (x) =

M∑
k=1

wkφk(x),

where W is sampled
from a Gaussian
density,

wk ∼ N (0, α) .

-2
-1
0
1
2

-8 -6 -4 -2 0 2 4 6 8
f(

x)
x

Figure : Functions sampled using the basis set from
figure 3. Each line is a separate sample, generated
by a weighted sum of the basis set. The weights, w
are sampled from a Gaussian density with variance
α = 1.



Direct Construction of Covariance Matrix

I Use matrix notation to write function,

f (xi; w) =

M∑
k=1

wkφk (xi)
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Direct Construction of Covariance Matrix

I Use matrix notation to write function,

f (xi; w) =

M∑
k=1

wkφk (xi)

computed at training data gives a vector

f =Φw.

w and f are only related by an inner product.

Φ ∈ <n×p is a design matrix

Φ is fixed and non-stochastic for a given training set.

f is Gaussian distributed.



Expectations

I We have
〈f〉 =Φ 〈w〉 .

I Prior mean of w was zero giving

〈f〉 = 0.

I Prior covariance of f is

K =
〈
ff>

〉
− 〈f〉 〈f〉>

We use 〈·〉 to denote expectations under prior distributions.
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Expectations

I We have
〈f〉 =Φ 〈w〉 .

I Prior mean of w was zero giving

〈f〉 = 0.

I Prior covariance of f is

K =
〈
ff>

〉
− 〈f〉 〈f〉>

〈
ff>

〉
=Φ

〈
ww>

〉
Φ>,

giving
K = γ′ΦΦ>.

We use 〈·〉 to denote expectations under prior distributions.



Covariance between Two Points

I The prior covariance between two points xi and x j is

k
(
xi, x j

)
= φ: (xi)

> φ:

(
x j

)
,

or in sum notation

k
(
xi, x j

)
= γ′

M∑
`

φ` (xi)φ`
(
x j

)
I For the radial basis used this gives

k
(
xi, x j

)
= γ′

M∑
k=1

exp

−
∣∣∣xi − µk

∣∣∣2 +
∣∣∣x j − µk

∣∣∣2
2`2

 .
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Covariance between Two Points

I The prior covariance between two points xi and x j is

k
(
xi, x j

)
= φ: (xi)

> φ:

(
x j

)
,

or in sum notation

k
(
xi, x j

)
= γ′

M∑
`

φ` (xi)φ`
(
x j

)
I For the radial basis used this gives

k
(
xi, x j

)
= γ′

M∑
k=1

exp

−
∣∣∣xi − µk

∣∣∣2 +
∣∣∣x j − µk

∣∣∣2
2`2

 .



Covariance Functions

RBF Basis Functions

k (x, x′) = αφ(x)>φ(x′)

φi(x) = exp

−
∥∥∥x − µi

∥∥∥2
2

`2


µ =


−1
0
1





Covariance Functions

RBF Basis Functions

k (x, x′) = αφ(x)>φ(x′)

φi(x) = exp

−
∥∥∥x − µi

∥∥∥2
2

`2


µ =


−1
0
1

 -3
-2
-1
0
1
2
3

-3 -2 -1 0 1 2 3



Selecting Number and Location of Basis

I Need to choose
1. location of centers

2. number of basis functions

I Consider uniform spacing over a region:

k
(
xi, x j

)
= γ∆

M∑
k=1

exp

−x2
i + x2

j − 2µk

(
xi + x j

)
+ 2µ2

k

2`2

 ,
Restrict analysis to 1-D input, x.
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Selecting Number and Location of Basis

I Need to choose
1. location of centers
2. number of basis functions

I Consider uniform spacing over a region:

k
(
xi, x j

)
= γ∆

M∑
k=1

exp

−x2
i + x2

j − 2µk

(
xi + x j

)
+ 2µ2

k

2`2

 ,
Restrict analysis to 1-D input, x.



Uniform Basis Functions

I Set each center location to

µk = a + ∆µ · (k − 1).

I Specify the basis functions in terms of their indices,

k
(
xi, x j

)
=γ∆µ

M−1∑
k=0
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j

2`2
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2
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2`2

)
.
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Infinite Basis Functions

I Take µ0 = a and µM = b so b = a + ∆µ · (M − 1).

I Take limit as ∆µ→ 0 so M→∞
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where we have used k · ∆µ→ µ.
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Result

I Performing the integration leads to
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I Now take limit as a→ −∞ and b→∞
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where α = γ

√

π`2.
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Infinite Feature Space

I An RBF model with infinite basis functions is a Gaussian
process.

I The covariance function is given by the exponentiated
quadratic covariance function.
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Infinite Feature Space

I An RBF model with infinite basis functions is a Gaussian
process.

I The covariance function is the exponentiated quadratic.
I Note: The functional form for the covariance function and

basis functions are similar.
I this is a special case,
I in general they are very different

Similar results can obtained for multi-dimensional input
models Williams (1998); Neal (1996).
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