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Disclaimers!

» Contributions from many people.
» Not in chronological order.

» Notation abuse ahead.



Motivation

Inference in a GP has the following demands:

Complexity: O(n%)
Storage: O(n?)

Inference in a sparse GP has the following demands:

Complexity: O(nm?)
Storage: O(nm)

where we get to pick m!



Computational savings
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Knn ~ an = Kany_ninKmn

Instead of inverting K;;;, we make a low rank (or Nystrom)
approximation, and invert K, instead.



Information capture

Everything we want to do with a GP involves
marginalising f

» Predictions
» Marginal likelihood

» Estimating covariance parameters

The posterior of f is the central object. This means inverting
K.
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Introducing u

Take and extra M points on the function, u = f(Z).

p(y, £,u) = p(y | Hp(t| u)p(u)



Introducing u
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Introducing u

Take and extra M points on the function, u = f(Z).

p(y, £, u) = p(y | Hp(t| u)p(u)

p(y|£) = N (ylf, o1)
p(f|u) = N(f|1<nm1<;1}nu, 1~<)
P(u) = N(u|0, Kmm)
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The alternative posterior

Instead of doing

p(y [ Hp(f]X)
fly,X) =
Py ) = B 0t

We'll do

p(ylu)p(ul|Z)
,Z) =
Py, 2) = O 2)du




The alternative posterior

Instead of doing

p(y [ Hp(f]X)
fly,X) =
Py ) = B 0t

We'll do

p(ylu)p(ul|Z)
,Z) =
Py, 2) = O 2)du

but p(y | u) involves inverting K,



Variational marginalisation of f

Inp(y|u) =In fp(ylf)p(ﬂu, X) df



Variational marginalisation of f

Inp(y|u) =In fp(ylf)p(ﬂu, X) df

Inp(y|u) = InEp¢ux [p(y )]



Variational marginalisation of f

Inp(y|u) =In fp(ylf)p(ﬂu, X) df
Inp(y [u) = InEy¢ux) [p(y )]

Inp(y [u) = Ey¢jux) [Inp(y )] = Inp(y | u)



Variational marginalisation of f

Inp(y|u) =In fp(ylf)p(ﬂu, X) df
Inp(y [u) = InEy¢ux) [p(y )]

Inp(y [u) = Ey¢jux) [Inp(y )] = Inp(y | u)

No inversion of K;;; required



Variational marginalisation of f (another way)

_ plylHp(f|uw)
p(ylu) = Ty



Variational marginalisation of f (another way)

_ plylHp(f|uw)
p(ylu) = Ty

p(f|u)
p(tly, u)

Inp(ylu) =Inp(y|f) +In



Variational marginalisation of f (another way)

_ plylHp(f|uw)
p(ylu) = Ty

p(f|u)
p(tly, u)

Inp(ylu) =Inp(y|f) +In

(flu)
Inp(y |u) = Eyei| Inp(y 1] + Epeju| In P(pfl—yflu)]



Variational marginalisation of f (another way)

_ plylHp(f|uw)
p(ylu) = Ty
p(f|u)

p(tly, u)

Inp(ylu) = Inp(y|f) +In
_ p(f|u)
Inp(y|u) = IEp(f|u)[11fll?(y|f)] + Ep(flu)[ln p(fl—y,u)]
Inp(y|u) = p(y | u) + KL[p(flu)l|p(f | y, u)]

No inversion of K;;;, required



An approximate likelihood

n
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A straightforward likelihood approximation, and a penalty
term



Now we can marginalise u

_ Py lwp(u|Z)
L) = ——
paly.2) [Plylwp(u|Z)du

» Computing the posterior costs O(nm?)
» We also get a lower bound of the marginal likelihood



What does the penalty term do?

1 T -1
Z T 252 (k”” - kmnKmmknm)
i=1

It doesn’t affect the posterior

It appears on the top and
bottom of Bayes’ rule

_ By lwp(uZ)
y,2) = -
Py, 2) = o O 2)du



What does the penalty term do?

Z _# (knn - kl—rran;?}ﬂkH’H’l)
It affects the marginal likelihood

Y 12Z) = f o7 gt Pl



What does the penalty term do?




How good is a sparse approximation?

It’s easy to show thatas Z — X:

» u — f (and the posterior is exact)
» The penalty term is zero.
» The cost returns to O(n®)



How good is a sparse approximation?

It’s easy to show thatas Z — X:

v

u — f (and the posterior is exact)

v

The penalty term is zero.
The cost returns to O(n°)

v
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We're okay if we have sufficient coverage with Z

» We can optimize Z along with the hyperparameters



Predictions
In a "full” GP, we did
p(fely) = f p(fx 1D)p(Ely) df
In a sparse GP, we do

p(f«ly) = f p(fx [w)p(uly) du



Recap

So far we:

» introduced Z,u

» approximated the intergral over f variationally

» captured the information in p(u|y)

» obtained a lower bound on the marginal likeihood
» saw the effect of the penalty term

» prediction for new points
Omitted details:

» optimization of the covariance parameters using the bound
» optimization of Z (simultaneously)
» the form of p(u|y)

» historical approximations



Other approximations

Subset selection

v

Random or systematic
Set Z to subset of X

Set u to subset of f

» Approximation to p(y|u):

> p(yilu) = p(yi | f;) i € selection
> plyilu)=1 i ¢ selection
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Selection is a combinatorial optimization problem!



Other approximations

Deterministic Training Conditional (DTC)

» Approximation to p(y | u):
> plyilw) = o(yi, Elf; |ul)
» As our variational formulation, but without penalty

Optimization of Z is difficult



Other approximations

Fully independent training conditional

» Approximation to p(y | u):
> pylw) = I1ip(yilw

Optimization of Z is still difficult, and there are some weird
heteroscedatic effects
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