Sparse GPs

James Hensman

Gaussian Process Winter School January 2014

Disclaimers!

- Contributions from many people.
- ► Not in chronological order.
- ▶ Notation abuse ahead.

Motivation

Inference in a GP has the following demands:

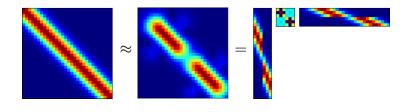
Complexity: $O(n^3)$ Storage: $O(n^2)$

Inference in a *sparse* GP has the following demands:

Complexity: $O(nm^2)$ Storage: O(nm)

where we get to pick *m*!

Computational savings



$$\mathbf{K}_{nn} \approx \mathbf{Q}_{nn} = \mathbf{K}_{nm} \mathbf{K}_{mm}^{-1} \mathbf{K}_{mn}$$

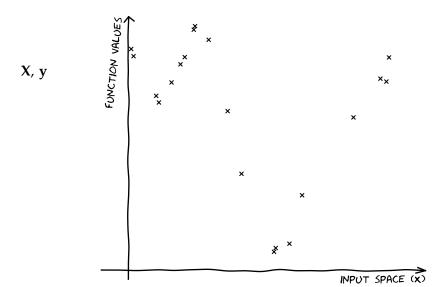
Instead of inverting \mathbf{K}_{nn} , we make a low rank (or Nyström) approximation, and invert \mathbf{K}_{mm} instead.

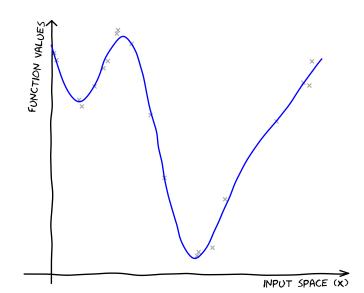
Information capture

Everything we want to do with a GP involves marginalising **f**

- Predictions
- Marginal likelihood
- Estimating covariance parameters

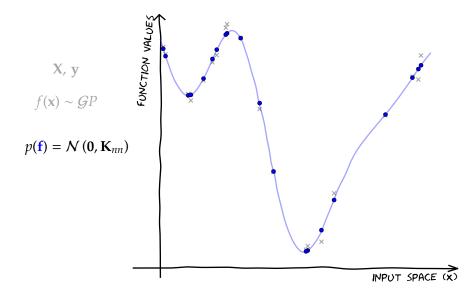
The posterior of **f** is the central object. This means inverting \mathbf{K}_{nn} .

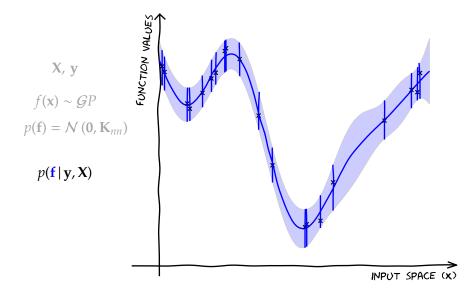




X, y

 $f(\mathbf{x}) \sim \mathcal{G}P$



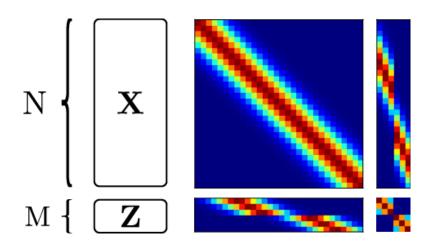


Introducing **u**

Take and extra M points on the function, $\mathbf{u} = f(\mathbf{Z})$.

$$p(\mathbf{y}, \mathbf{f}, \mathbf{u}) = p(\mathbf{y} | \mathbf{f}) p(\mathbf{f} | \mathbf{u}) p(\mathbf{u})$$

Introducing **u**

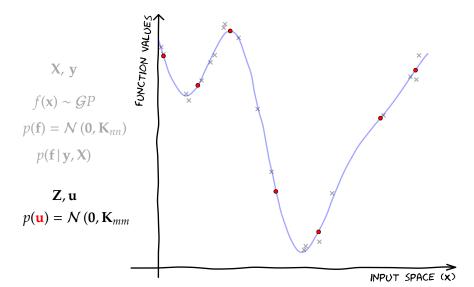


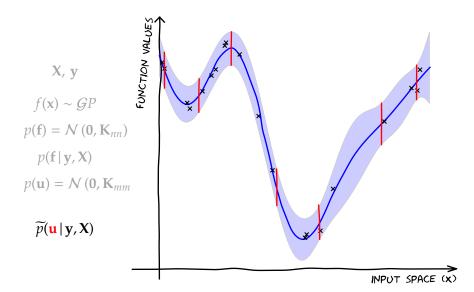
Introducing **u**

Take and extra M points on the function, $\mathbf{u} = f(\mathbf{Z})$.

$$p(\mathbf{y}, \mathbf{f}, \mathbf{u}) = p(\mathbf{y} | \mathbf{f}) p(\mathbf{f} | \mathbf{u}) p(\mathbf{u})$$
$$p(\mathbf{y} | \mathbf{f}) = \mathcal{N} (\mathbf{y} | \mathbf{f}, \sigma^2 \mathbf{I})$$

$$p(\mathbf{f} \mid \mathbf{u}) = \mathcal{N}\left(\mathbf{f} \mid \mathbf{K}_{nm} \mathbf{K}_{mm}^{-1} \mathbf{u}, \widetilde{\mathbf{K}}\right)$$
$$p(\mathbf{u}) = \mathcal{N}\left(\mathbf{u} \mid \mathbf{0}, \mathbf{K}_{mm}\right)$$





The alternative posterior

Instead of doing

$$p(\mathbf{f} \mid \mathbf{y}, \mathbf{X}) = \frac{p(\mathbf{y} \mid \mathbf{f})p(\mathbf{f} \mid \mathbf{X})}{\int p(\mathbf{y} \mid \mathbf{f})p(\mathbf{f} \mid \mathbf{X})d\mathbf{f}}$$

We'll do

$$p(\mathbf{u} \mid \mathbf{y}, \mathbf{Z}) = \frac{p(\mathbf{y} \mid \mathbf{u})p(\mathbf{u} \mid \mathbf{Z})}{\int p(\mathbf{y} \mid \mathbf{u})p(\mathbf{u} \mid \mathbf{Z})d\mathbf{u}}$$

The alternative posterior

Instead of doing

$$p(\mathbf{f} \mid \mathbf{y}, \mathbf{X}) = \frac{p(\mathbf{y} \mid \mathbf{f})p(\mathbf{f} \mid \mathbf{X})}{\int p(\mathbf{y} \mid \mathbf{f})p(\mathbf{f} \mid \mathbf{X})d\mathbf{f}}$$

We'll do

$$p(\mathbf{u} \mid \mathbf{y}, \mathbf{Z}) = \frac{p(\mathbf{y} \mid \mathbf{u})p(\mathbf{u} \mid \mathbf{Z})}{\int p(\mathbf{y} \mid \mathbf{u})p(\mathbf{u} \mid \mathbf{Z})\mathrm{d}\mathbf{u}}$$

but $p(\mathbf{y} | \mathbf{u})$ involves inverting \mathbf{K}_{nn}

$$\ln p(\mathbf{y} \mid \mathbf{u}) = \ln \int p(\mathbf{y} \mid \mathbf{f}) p(\mathbf{f} \mid \mathbf{u}, \mathbf{X}) \, d\mathbf{f}$$

$$\ln p(\mathbf{y} | \mathbf{u}) = \ln \int p(\mathbf{y} | \mathbf{f}) p(\mathbf{f} | \mathbf{u}, \mathbf{X}) \, d\mathbf{f}$$
$$\ln p(\mathbf{y} | \mathbf{u}) = \ln \mathbb{E}_{p(\mathbf{f} | \mathbf{u}, \mathbf{X})} [p(\mathbf{y} | \mathbf{f})]$$

$$\ln p(\mathbf{y} \mid \mathbf{u}) = \ln \int p(\mathbf{y} \mid \mathbf{f}) p(\mathbf{f} \mid \mathbf{u}, \mathbf{X}) \, d\mathbf{f}$$
$$\ln p(\mathbf{y} \mid \mathbf{u}) = \ln \mathbb{E}_{p(\mathbf{f} \mid \mathbf{u}, \mathbf{X})} [p(\mathbf{y} \mid \mathbf{f})]$$

$$\ln p(\mathbf{y} \,|\, \mathbf{u}) \geq \mathbb{E}_{p(\mathbf{f} \,|\, \mathbf{u}, \boldsymbol{X})} \left[\ln p(\mathbf{y} \,|\, \mathbf{f}) \right] \triangleq \ln \widetilde{p}(\mathbf{y} \,|\, \mathbf{u})$$

$$\ln p(\mathbf{y} \mid \mathbf{u}) = \ln \int p(\mathbf{y} \mid \mathbf{f}) p(\mathbf{f} \mid \mathbf{u}, \mathbf{X}) \, d\mathbf{f}$$

$$\ln p(\mathbf{y} \mid \mathbf{u}) = \ln \mathbb{E}_{p(\mathbf{f} \mid \mathbf{u}, \mathbf{X})} [p(\mathbf{y} \mid \mathbf{f})]$$

$$\ln p(\mathbf{y} \mid \mathbf{u}) \ge \mathbb{E}_{p(\mathbf{f} \mid \mathbf{u}, \mathbf{X})} [\ln p(\mathbf{y} \mid \mathbf{f})] \triangleq \ln \widetilde{p}(\mathbf{y} \mid \mathbf{u})$$

No inversion of \mathbf{K}_{nn} required

$$p(\mathbf{y} \mid \mathbf{u}) = \frac{p(\mathbf{y} \mid \mathbf{f})p(\mathbf{f} \mid \mathbf{u})}{p(\mathbf{f} \mid \mathbf{y}, \mathbf{u})}$$

$$p(\mathbf{y} \mid \mathbf{u}) = \frac{p(\mathbf{y} \mid \mathbf{f})p(\mathbf{f} \mid \mathbf{u})}{p(\mathbf{f} \mid \mathbf{y}, \mathbf{u})}$$
$$\ln p(\mathbf{y} \mid \mathbf{u}) = \ln p(\mathbf{y} \mid \mathbf{f}) + \ln \frac{p(\mathbf{f} \mid \mathbf{u})}{p(\mathbf{f} \mid \mathbf{y}, \mathbf{u})}$$

$$p(\mathbf{y} \mid \mathbf{u}) = \frac{p(\mathbf{y} \mid \mathbf{f})p(\mathbf{f} \mid \mathbf{u})}{p(\mathbf{f} \mid \mathbf{y}, \mathbf{u})}$$
$$\ln p(\mathbf{y} \mid \mathbf{u}) = \ln p(\mathbf{y} \mid \mathbf{f}) + \ln \frac{p(\mathbf{f} \mid \mathbf{u})}{p(\mathbf{f} \mid \mathbf{y}, \mathbf{u})}$$
$$\ln p(\mathbf{y} \mid \mathbf{u}) = \mathbb{E}_{p(\mathbf{f} \mid \mathbf{u})} \Big[\ln p(\mathbf{y} \mid \mathbf{f}) \Big] + \mathbb{E}_{p(\mathbf{f} \mid \mathbf{u})} \Big[\ln \frac{p(\mathbf{f} \mid \mathbf{u})}{p(\mathbf{f} \mid \mathbf{y}, \mathbf{u})} \Big]$$

$$p(\mathbf{y} | \mathbf{u}) = \frac{p(\mathbf{y} | \mathbf{f})p(\mathbf{f} | \mathbf{u})}{p(\mathbf{f} | \mathbf{y}, \mathbf{u})}$$

$$\ln p(\mathbf{y} | \mathbf{u}) = \ln p(\mathbf{y} | \mathbf{f}) + \ln \frac{p(\mathbf{f} | \mathbf{u})}{p(\mathbf{f} | \mathbf{y}, \mathbf{u})}$$

$$\ln p(\mathbf{y} | \mathbf{u}) = \mathbb{E}_{p(\mathbf{f} | \mathbf{u})} \Big[\ln p(\mathbf{y} | \mathbf{f}) \Big] + \mathbb{E}_{p(\mathbf{f} | \mathbf{u})} \Big[\ln \frac{p(\mathbf{f} | \mathbf{u})}{p(\mathbf{f} | \mathbf{y}, \mathbf{u})} \Big]$$

$$\ln p(\mathbf{y} | \mathbf{u}) = \widetilde{p}(\mathbf{y} | \mathbf{u}) + \text{KL}[p(\mathbf{f} | \mathbf{u}) | | p(\mathbf{f} | \mathbf{y}, \mathbf{u})]$$

No inversion of \mathbf{K}_{nn} required

An approximate likelihood

$$\widetilde{p}(\mathbf{y} | \mathbf{u}) = \prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i} | \mathbf{k}_{mn}^{\top} \mathbf{K}_{mm}^{-1} \mathbf{u}, \sigma^{2}\right) \exp\left\{-\frac{1}{2\sigma^{2}} \left(k_{nn} - \mathbf{k}_{mn}^{\top} \mathbf{K}_{mm}^{-1} \mathbf{k}_{mn}\right)\right\}$$

A straightforward likelihood approximation, and a penalty term

Now we can marginalise **u**

$$\widetilde{p}(\mathbf{u} \mid \mathbf{y}, \mathbf{Z}) = \frac{\widetilde{p}(\mathbf{y} \mid \mathbf{u})p(\mathbf{u} \mid \mathbf{Z})}{\int \widetilde{p}(\mathbf{y} \mid \mathbf{u})p(\mathbf{u} \mid \mathbf{Z})d\mathbf{u}}$$

- Computing the posterior costs $O(nm^2)$
- We also get a lower bound of the marginal likelihood

What does the penalty term do?

$$\sum_{i=1}^{n} -\frac{1}{2\sigma^2} \left(k_{nn} - \mathbf{k}_{mn}^{\mathsf{T}} \mathbf{K}_{mm}^{-1} \mathbf{k}_{mn} \right)$$

It doesn't affect the posterior

It appears on the top and bottom of Bayes' rule

$$\widetilde{p}(\mathbf{u} \mid \mathbf{y}, \mathbf{Z}) = \frac{p(\mathbf{y} \mid \mathbf{u})p(\mathbf{u} \mid \mathbf{Z})}{\int \widetilde{p}(\mathbf{y} \mid \mathbf{u})p(\mathbf{u} \mid \mathbf{Z})d\mathbf{u}}$$

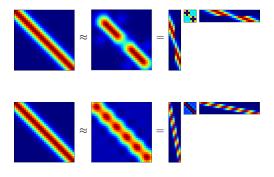
What does the penalty term do?

$$\sum_{i=1}^{n} -\frac{1}{2\sigma^2} \left(k_{nn} - \mathbf{k}_{mn}^{\top} \mathbf{K}_{mm}^{-1} \mathbf{k}_{mn} \right)$$

It affects the marginal likelihood

$$\widetilde{p}(\mathbf{y} | \mathbf{Z}) = \int \widetilde{p}(\mathbf{y} | \mathbf{u}) p(\mathbf{u} | \mathbf{Z}) d\mathbf{u}$$

What does the penalty term do?



How good is a sparse approximation?

It's easy to show that as $Z \rightarrow X$:

- ▶ $u \rightarrow f$ (and the posterior is exact)
- ► The penalty term is zero.
- ▶ The cost returns to $O(n^3)$

How good is a sparse approximation?

It's easy to show that as $\mathbb{Z} \to \mathbb{X}$:

- $\mathbf{u} \rightarrow \mathbf{f}$ (and the posterior is exact)
- ► The penalty term is zero.
- ▶ The cost returns to $O(n^3)$

- ► We're okay if we have sufficient coverage with Z
- ► We can optimize Z along with the hyperparameters

Predictions

In a 'full' GP, we did

$$p(f_{\star} \mid \mathbf{y}) = \int p(f_{\star} \mid \mathbf{f}) p(\mathbf{f} \mid \mathbf{y}) \, d\mathbf{f}$$

In a sparse GP, we do

$$p(f_{\star} | \mathbf{y}) = \int p(f_{\star} | \mathbf{u}) \widetilde{p}(\mathbf{u} | \mathbf{y}) \, d\mathbf{u}$$

Recap

So far we:

- ▶ introduced Z, u
- approximated the intergral over f variationally
- captured the information in $\widetilde{p}(\mathbf{u} | \mathbf{y})$
- obtained a lower bound on the marginal likeihood
- saw the effect of the penalty term
- prediction for new points

Omitted details:

- optimization of the covariance parameters using the bound
- optimization of Z (simultaneously)
- the form of $\widetilde{p}(\mathbf{u} | \mathbf{y})$
- historical approximations

Other approximations

Subset selection

- Random or systematic
- Set Z to subset of X
- ▶ Set **u** to subset of **f**
- Approximation to $p(\mathbf{y} | \mathbf{u})$:
 - ▶ $p(\mathbf{y}_i | \mathbf{u}) = p(\mathbf{y}_i | \mathbf{f}_i)$ $i \in \text{selection}$
 - ► $p(\mathbf{y}_i | \mathbf{u}) = 1$ $i \notin \text{selection}$

Selection is a combinatorial optimization problem!

Other approximations

Deterministic Training Conditional (DTC)

- ▶ Approximation to $p(\mathbf{y} | \mathbf{u})$:
 - $\widetilde{p}(\mathbf{y}_i | \mathbf{u}) = \delta(\mathbf{y}_i, \mathbb{E}[\mathbf{f}_i | \mathbf{u}])$
- As our variational formulation, but without penalty

Optimization of **Z** is difficult

Other approximations

Fully independent training conditional

- ► Approximation to $p(\mathbf{y} | \mathbf{u})$:
- $p(\mathbf{y} | \mathbf{u}) = \prod_i p(\mathbf{y}_i | \mathbf{u})$

Optimization of **Z** is still difficult, and there are some weird heteroscedatic effects

References

MK Titsias – Variational learning of inducing variables in sparse Gaussian processes. AISTATS, 2009.

J Quionero-Candela, CE Rasmussen –A unifying view of sparse approximate Gaussian process regression. JMLR, 2005.