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Talk plan

(a) UQ and computer experiments

(b) Missing technical details
I Sampling GP hyper-parameters and model averaging
I Sequential GP updates

(c) Examples of use

(i) accelerating Monte Carlo algorithms using GPs
(ii) simulator discrepancy modelling



Climate Science
Predicting future climate



Challenges of computer experiments
Climate Predictions, IPCC AR4



Challenges for statistics

Key questions: How do we make inferences about the world from a
simulation of it?

how do we relate simulators to reality? (model error)

how do we estimate tunable parameters? (calibration)

how do we deal with computational constraints? (stat. comp.)

how do we make uncertainty statements about the world that
combine models, data and their corresponding errors? (UQ)

There is an inherent a lack of quantitative information on the uncertainty
surrounding a simulation - unlike in physical experiments.

All of these questions are tackled by methodology that uses GPs!
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Sampling hyperparameters
We’ve been modelling

f (x) ∼ GP(0, kψ(x , x ′))

where kψ is a covariance function that depends upon unknown
parameters.

For example, in 1d, using the exponentiated quadratic

kψ(x , x ′) = σ2 exp

(
−(x − x ′)2

2λ2

)
and we might assume a Gaussian variance for the observations

yi |f ∼ N(f (xi ), τ
2)

where λ is the length-scale, σ2 is the GP variance, and τ2 is the
observation variance (nugget variance in kriging)

ψ = (λ, σ2, τ2)
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Estimating hyper-parameters
How do we estimate the hyper-parameters ψ?

Most commonly, we use a plug-in approach, and fix their value at the
MAP or ML estimate

ψ̂ = arg max
ψ
π(y|X, ψ)π(ψ)

and then make predictions using

π(y∗|ψ̂,X, y, x∗)

Sometimes, we might instead want to average across the unknown values
when making predictions (i.e., be a good Bayesian)

π(y∗|X, y, x∗) =

∫
π(y∗|ψ,X, y, x∗)π(ψ|X, y)dψ

How do we do this?

Laplace approximation

Monte Carlo

NB: careful choice of prior helps
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Numerical demonstration

Toy data, generated from a GP with λ = 3, σ2 = 5, τ2 = 0.1
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Plug-in (non-Bayesian) predictions π(y ∗|ψ̂,X, y, x∗)
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Bayesian (model averaging) vs Non-Bayesian (ML plug-in)
π(y∗|X, y, x∗) =

∫
π(y∗|ψ,X, y, x∗)π(ψ|X, y)dψ
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This is using the true covariance function. For a mis-specified model, the
difference can be much greater.



Sampling hyper-parameters

Default approach is to resort to Metropolis-Hastings: build a Markov
chain on the parameter space, ψ1, ψ2, . . . so that it converges to π(ψ|X, y)

Suppose we’re currently at ψt

1 Propose a move to ψ′ from q(ψt , ·), e.g. Gaussian random walk

2 Set ψt+1 = ψ′ with MH acceptance probability

r =
q(ψ′, ψt)π(y|X, ψ′)π(ψ′)

q(ψt , ψ′)π(y|X, ψt)π(ψt)

otherwise set ψt+1 = ψt

Unfortunately this approach often works poorly, even with extensive
tuning of proposals

Mixing tends to be very poor even in 1d problems

Instead, try slice sampling or Hamiltonian Monte Carlo (HMC).
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Slice sampling hyper-parameters
Think x = ψ, find π(x |D) ≡ π(ψ|X , y)

To sample from π(x |D), introduce auxilliary variable y , and sample from

π(x , y) ∼ Iy≤f (x)

where f (x) = π(x)l(x) ∝ π(x |D)
1 yt+1 ∼ U[0, f (xt)]
2 xt+1 ∼ U{x : f (x) ≥ yt+1}



MCMC
Minimal tuning of the MH, no tuning in slice sampling
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Numerical demonstration
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Example 1: accelerating ABC



Calibration

For most simulators we specify parameters θ and i.c.s and the
simulator, f (θ), generates output X .

We are interested in the inverse-problem, i.e., observe data D, want
to estimate parameter values θ which explain this data.

For Bayesians, this is a
question of finding the
posterior distribution

π(θ|D) ∝ π(θ)π(D|θ)

posterior ∝
prior× likelihood



Approximate Bayesian Computation (ABC)

ABC algorithms are a collection of Monte Carlo methods used for
calibrating simulators

they do not require explicit knowledge of the likelihood function
π(x |θ)

inference is done using simulation from the model (they are
‘likelihood-free’).

ABC methods have become popular in the biological sciences and versions
of the algorithm exist in most modelling communities.

ABC methods can be crude but they have an important role to play.

Scientists are building simulators (intractable ones), and fitting them
to data.

I There is a need for simple methods that can be credibly applied.
I Likelihood methods for complex simulators are complex.
I Modelling is something that can be done well by scientists not trained

in complex statistical methods.
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Uniform ABC algorithms

Uniform ABC

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(D,X ) ≤ ε

As ε→∞, we get observations from the prior, π(θ).

If ε = 0, we generate observations from π(θ | D)

ε reflects the tension between computability and accuracy.

The hope is that πABC (θ) ≈ π(θ|D,PSH) for ε small, where
PSH=‘perfect simulator hypothesis’
There are uniform ABC-MCMC, ABC-SMC, ABC-EM, ABC-EP,
ABC-MLE algorithms, etc.
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Generalized ABC (GABC)
Wilkinson 2008/2013, Fearnhead and Prangle 2012

We can generalise the rejection-ABC algorithm by using arbitrary
acceptance kernels:

Generalized rejection ABC (Rej-GABC)

1 θ ∼ π(θ) and X ∼ π(x |θ)

2 Accept (θ,X ) if

U ∼ U[0, 1] ≤ πABC (θ, x)

Mg(θ, x)
=

π(D|X )

maxx π(D|x)

In uniform ABC we take

π(D|X ) =

{
1 if ρ(D,X ) ≤ ε
0 otherwise

this reduces the algorithm to

2’ Accept θ ifF ρ(D,X ) ≤ ε
ie, we recover the uniform ABC algorithm.



Generalized ABC (GABC)
Wilkinson 2008/2013, Fearnhead and Prangle 2012

We can generalise the rejection-ABC algorithm by using arbitrary
acceptance kernels:

Generalized rejection ABC (Rej-GABC)

1 θ ∼ π(θ) and X ∼ π(x |θ)

2 Accept (θ,X ) if

U ∼ U[0, 1] ≤ πABC (θ, x)

Mg(θ, x)
=

π(D|X )

maxx π(D|x)

In uniform ABC we take

π(D|X ) =

{
1 if ρ(D,X ) ≤ ε
0 otherwise

this reduces the algorithm to

2’ Accept θ ifF ρ(D,X ) ≤ ε
ie, we recover the uniform ABC algorithm.



Problems with Monte Carlo methods

Monte Carlo methods are generally guaranteed to succeed if we run them
for long enough.

This guarantee comes at a cost.

Most methods sample naively - they don’t learn from previous
simulations.

They don’t exploit known properties of the likelihood function, such
as continuity

They sample randomly, rather than using space filling designs.

This naivety can make a full analysis infeasible without access to a large
amount of computational resource.

If we are prepared to lose the guarantee of eventual success, we can
exploit the continuity of the likelihood function to learn about its shape,
and to dramatically improve the efficiency of our computations.
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Likelihood estimation

The GABC framework assumes

π(D|θ) =

∫
π(D|X )π(X |θ)dX

≈ 1

N

∑
π(D|Xi )

where Xi ∼ π(X |θ). Or in Wood (2010),

π(D|θ) = φ(D;µθ,Σθ)

For many problems, we believe the likelihood is continuous and smooth,
so that π(D|θ) is similar to π(D|θ′) when θ − θ′ is small

We can model π(D|θ) using GPs and use the GP model to find the
posterior in place of running the simulator.
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Example: Ricker Model

The Ricker model is one of the prototypic ecological models.

used to model the fluctuation of the observed number of animals in
some population over time

It has complex dynamics and likelihood, despite its simple
mathematical form.

Ricker Model

Let Nt denote the number of animals at time t.

Nt+1 = rNte
−Nt+er

where et are independent N(0, σ2e ) process noise

Assume we observe counts yt where

yt ∼ Po(φNt)



Design 1 - 128 pts
We use a Sobol sequence on the prior input space to find a design
{θi}di=1. We estimate the likelihood at each point in the design, and aim
to fit a GP model to estimate the likelihood at θ values not in the design.



History matching waves

The likelihood is too difficult to model, so we model the log-likelihood
instead.

G (θ) = log L(θ), L̂(θi ) =
1

N

∑
π(D|Xi ), Xi ∼ π(X |θi )

However, the log-likelihood for a typical problem ranges across too wide a
range of values.

Consequently, any Gaussian process model will struggle to model the
log-likelihood across the entire input range.

Introduce waves of history matching, similar to those used in Michael
Goldstein’s work.

In each wave, build a GP model that can rule out regions of space as
implausible.
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History matching waves
We say θ is implausible if

m(θ) + 3σ < max
θi

log π(D|θi )− T

where m(θ) is the Gaussian process estimate of log π(D|θ), and σ is the
variance of the GP estimate.

We use threshold T = 10 for the Ricker model, as a difference of 10
on the log scale between two likelihoods, means that assigning the θ
with the smaller log-likelihood a posterior density of 0 (by saying it is
implausible) is a good approximation.

This still wasn’t enough in some problems,

Instead model log(− log π(D|θ)) in the first wave
For the next wave, we begin by using the GPs from the previous
waves to decide which parts of the input space are implausible.
We then extend the design into the not-implausible region and build
a new GP
Use this GP to rule out more space as implausible. Build a new (and
more accurate GP) in this region. etc



Results - Design 1 - 128 pts



Diagnostics for GP 1 - threshold = 5.6



Results - Design 2 - 314 pts - 38% of space implausible



Diagnostics for GP 2 - threshold = -21.8



Design 3 - 149 pts - 62% of space implausible



Diagnostics for GP 3 - threshold = -20.7



Design 4 - 400 pts - 95% of space implausible



Diagnostics for GP 4 - threshold = -16.4



MCMC Results
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Computational details

The Wood MCMC method used 105 × 500 simulator runs

The GP code used (128 + 314 + 149 + 400) = 991× 500 simulator
runs

I 1/100th of the number used by Wood’s method.

By the final iteration, the Gaussian processes had ruled out over 98% of
the original input space as implausible,

the MCMC sampler did not need to waste time exploring those
regions.



Other GP accelerated Monte Carlo approaches
There are several different ways of approaching this problem

Wilkinson 2014 models the log-likelihood l(θ) as its one dimensional.
But, the orders of magnitude variation make it difficult to model

Meeds and Welling 2014 instead model the mean and variance of the
simulator summary

ES(f (θ)) ≈ g1(θ) VarS(f (θ)) ≈ g2(θ)

and then assume L(θ) = Φ(Sobs ; g1(θ), g2(θ)).

The mean and variance will be easier to model than the likelihood
(although usually dimS 6= 1), but not all simulators have a likelihood
that can be approximated by a Gaussian.

Other GP accelerated Monte Carlo methods

Rasmussen 2003 used GPs to accelerate HMC
Dahlin and Lindsten 2013 used GPs to accelerate parameter
estimation in SSMs

I Log-likellihood at θ can be estimated by running a particle filter - very
expensive.
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Active learning
To save computational cost, we want to build the design iteratively

choose a new design point xn according to some criterion using the
current GP

run the simulator to find yn

update the fit conditional on the new data point

How do we do this efficiently?

Suppose we have a GP model trained using n − 1 training points. What
does this mean?

We have the inverse Gram matrix K−1n−1 where (Kn−1)ij = k(xi , xj).

We have estimates of hyper-parameters ψ̂n−1.

Suppose now we are given a new observation pair (xn, yn) that we want to
incorporate in our GP training set.

add a row and column to the previous Gram matrix Kn−1 to form
new matrix Kn, and find the inverse K−1n

a naive implementation would have computational cost O(n3)
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Sequential GP updates

It is much more efficient to use sequential matrix updates instead.

If

Kn =

(
Kn−1 k(xn)
k(xn)> k(xn, xn)

)
where k(xn) = (k(x1, xn), . . . , k(xn−1, xn))> then

K−1n =

(
K−1n−1 + gn(xn)g>n (xn)/µn(xn) gn(xn)

g>n (xn) µn(xn)

)
with

gn(x) = µ(x)K−1n−1k(x)

µn(x) =
(
k(x , x)− k(x)TK−1n−1k(x)

)−1
This has cost O(n2) rather than O(n3)!
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Demonstration

Suppose we have 1000 observations that arrive sequentially, and we want
to train a GP model to predict one step ahead.

Some timings (s):

n Naive sequential

100 0.050 0.046
300 4.6 0.9
500 33 3.0
750 145 14

1000 422 29



Hyper-parameters

How do we sequentially deal with hyper parameters?

Naive approach:

update (with ML say) after adding every m additional data points.

Note that this involves repeatedly doing the O(n3) inverse in the
optimisation

We can start the optimiser at the previous estimated hyper
parameter value.

An alternative is to use sequential Monte Carlo (SMC) methods
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SMC for GP hyper-parameters
Gramacy and Polson 2012

In SMC we represent the posteriors by a cloud of weighted particles
{ψi ,wi} (e.g. ψ = (λ, σ2, τ2))

π(ψ|D) ≈
∑

wiδψi
(ψ)

where
∑

wi = 1 and δx(·) is a Dirac delta function centred at x.

As each new data point arrives we update the posterior by changing the
weights to incorporate the new data point

More formally, given data D1:n = {(x1, y1), . . . , (xn, yn)}, let each particle
contain the information

S
(i)
n = {K , λ, σ2, τ2}

where K is the Gram matrix for D1:n. This information is everything we
need to make predictions using the Gaussian process.
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Particle learning of GP hyper-parameters
We exploit the relationship

π(Sn+1|D1:n+1) =

∫
π(Sn+1|Sn,Dn+1)π(Sn|D1:n+1)dSn

∝
∫
π(Sn+1|Sn,Dn+1)π(Dn+1|Sn)π(Sn|D1:n)dSn

At time t, we have particles {S (i)
n } which we can use to approximate

π(ψ|D1:n) and find π(y∗|x∗,D1:n) etc

1 Resample: Draw index ζ(i) for particle from {i}Ni=1 according to
weights

wi ∝ π(Dn+1|S (i)
n ) = π(yn+1|xn+1,Dn, ψ

(i)
n )

2 Propagate

S
(i)
n+1 ∼ π(Sn+1|Sζ(i)n ,D1:n+1)

which means simply finding Kn+1 from Kn using the sequential
matrix update equations.
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Particle learning of GP hyper-parameters

This method soon suffers with particle degeneracy if the posteriors are
very different to the priors

i.e., wi ≈ 1 for some i , with wj ≈ 0 for j 6= i

Can judge degeneracy with the effective sample size

ESS =
1∑
w2
i

ESS= N if wi = 1
N ∀i , but ESS = 1 in the case of extreme

degeneracy.

The particles can be replenished by perturbing them with an MCMC
sampler that has π(ψ|Dn) as its invariant distribution

e.g. run a slice sampler for k iterations

but this is again O(n3)



Particle learning of GP hyper-parameters

This method soon suffers with particle degeneracy if the posteriors are
very different to the priors

i.e., wi ≈ 1 for some i , with wj ≈ 0 for j 6= i

Can judge degeneracy with the effective sample size

ESS =
1∑
w2
i

ESS= N if wi = 1
N ∀i , but ESS = 1 in the case of extreme

degeneracy.

The particles can be replenished by perturbing them with an MCMC
sampler that has π(ψ|Dn) as its invariant distribution

e.g. run a slice sampler for k iterations

but this is again O(n3)



Progression of π(λ|Dn), n = 1, . . . , 10
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In this toy example, the SMC (N = 1000, not tuned) takes as long as the
slice sampling (N = 5000, not tuned)

However, as the number of data points grows, SMC quickly starts to
outperform slice sampling in terms of cost (nb this only applies to
sequential learning problems).



Conclusions


