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Motivation

Primary Biliary Cirrhosis in Newcastle-Upon-Tyne

Primary Biliary Cirrhosis in Newcastle-Upon-Tyne (Aggregated)
Gastrointestinal Disease Surveillance

Bovine Tuberculosis in Cornwall

Spatial Point Process Data
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Multivariate Spatial Point Process Data

e 873 genotyped
cases of bovine
tuberclosis
breakdowns in
Cornwall herds
(1989-2002)

e Is there spatial
segregation?
(related to
potential
transmission
mechanisms)
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The log-Gaussian Cox Process
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Bayesian Inference
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The log-Gaussian Cox Process

Gaussian process: A stochastic process Y(s) where s € R9 is a
Gaussian process if any finite collection
[Y(s1),..., Y(sn)] has a multivariate Gaussian
distribution.

(Spatial/ spatiotemporal) Poisson process: A stochastic process
that counts the number of events in a given
spatial /spatiotemporal region.

Intensity process: a non-negative valued stochastic process
A: S+ [0,00) where S C RY; typically d =2 .

Cox process:  An inhomogenegous Poisson process with stochastic
intensity A.

log-Gaussian Cox process: a Cox process where log A is a
Gaussian process
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The log-Gaussian Cox Process

If X is a Cox process, then conditional on A, we have for any finite
observation window W C S

number of X in W ~ Poisson </ /\(s)ds)
w

e We think of X as being continuous in space

e In practice, for computational reasons, we treat X as
piecewise constant on a fine grid.
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Example: Spatial Point Process

Let X(s) denote the number of events in a grid cell containing s.

X(s) ~ Poisson[A(s)]
A(s) = Ca(s)exp{Z(s)5+ Y(s)}

e Cp is the area of the grid cell containing s (regular grid).

e Z(s) is a vector of covariates particular to the grid cell
containing s

e Y(s) is the value of the Gaussian process Y in the grid cell
containing s
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Bayesian Inference

Given some observed data X, we use the posterior density:

(B, Y, n|X) oc m(X|B, Y, n)w (B, Y,n)
for Bayesian inference.

e 11 = {0, ¢} are parameters that control the properties of Y
(respectively variance and spatial dependence)

e We assume 7(X|3,Y,n) = n(X|5,Y)
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The log-Gaussian Cox Process
Spatial Point Process
Bayesian Inference

MCMC

Markov Chain Monte Carlo

Independent block proposal scheme. A mix of:
e Langevin kernels for Y and (8
e A random walk kernel for n

Algorithm tuning:

e Design the proposal covariance using a quadratic
approximation to the posterior.

e Adaptively tune the chain to maintain acceptance rate of
0.574 to suit Langevin kernels
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lgcp Log-Gaussian Cox Processes in R

ﬁ Journal of Statistical Software ﬁ Journal of Statistical Softwware

lgep: Inference with Spatial and Spatio-Temporal Bayesian Inference and Data A 4
Log-Gaussian Cox Processes in Schemes for Spatial, Spatiotemporal and

Multivariate Log-Gaussian Cox Processes in R
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Aggregated Spatial Point Process Data

e Observe number of events T; in each
region A;

e Augment the list of parameters,
{B,7n, Y}, with an additional variable N,
the unobserved cell count (akin to X)

e Seek to sample from:

w(B,n, Y, N|T1,..., Tn).

e Use a Gibbs scheme, alternately sampling
from 7(8,n, Y|N, T1.m) and
W(N‘ﬁa 1, Y, 7-1:m)
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Spatiotemporal Point Process Data

Model:
X(s,t) = Poisson[R(s,t)]
R(s,t) = Cal(s,t)exp{Z(s,t)8+ Y(s,t)}
e Similar in notation to spatial case: (s, t) 0 /:__,fm,

instead of (s)

e Assume a separable spatiotemporal
covariance function for Y:

COV[Y(Sl, tl), Y(SQ, tz)] = 02 exp{—\|52—$1H/<z5—]t2—t1]/9}.

e () determines the temporal correlation in
the process Y.
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Multivariate Spatial Point Process Data

Model for multitype process with K types, for k € 1,... K,

Xk(s) Poisson[Rx(s)]
Rk(S) = CA)\k(S) eXp{Z(S)kﬁk + Yk(S) + YK+1(5)}

e Xi(s) is the number of events of type k .
in the computational grid cell containing  Pris g

the point s
e Yk, captures areas of high or low
intensity that are common to all types & "
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Convergence/Mixing Diagnostics

R> traceplots(lg)
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R> plot(ltar(lg),lty="s")
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Convergence/Mixing Diagnostics

Concul

R> parautocorr(1lg)
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R> lagch <- c(1, 5, 15)
R> Sacf <- autocorr(lg, lagch,

+

inWindow = NULL)

Lag: 1
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Plots of Prior and Posterior

R> priorpost(lg)
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Tabulate Results

R> parsum <- parsummary(lg, LaTeX = TRUE)
R> require("miscFuncs")

R> latextable(parsum, rownames = rownames(parsum),

R> textsummary(lg)

A summary of the parameters
of the latent field is as fol-
lows. The parameter o had

+ colnames = c("Parameter", colnames(parsum)), digits = 4) 1
median 8x107 " (95% CRI
0.603 to 0.97) and the pa-
rameter ¢ had median 637
Parameter median lower 95% CRI upper 95% CRI (95% CRI 389 to 1098).
o 0.7999 0.6033 0.9695
@ 637.1 389.3 1098 The following effects were
exp(B(intercept)) 4.111x1077 8.735x 107 3.019x1075 found to be significant: each
exp(Bpop) 3.162 2.633 3.84 unit increase in propmale led
xP(Bpropmale) 1.328x107%  3.937x10° 4.62x1072 t:’sk llt':ﬁ’ecs'lz: 1';3 ;eﬁ)‘ﬂ’g
exp(Bincome) 0.5449 1.425x102 23.05 (95% CRI 304%10-9 to
exp(BEmployment ) 52.73 0.2343 9981 AP o
exp(BEducation) 0.9961 0.9797 1.012 4.62x1077); each unit in-
exp(BBarriers 0.982 0.9594 1.007 crease in pop led tz_) aincrease
exp(Bcrime 0.9034 0.6956 1.223 in relative risk with median
0,
exp(Bemmme ) 1015 0.9967 1035 3.16 (95% CRI 2.63 to 3.84).
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Posterior Correlation Function

R> postcov(lg)

R
- — 0.5 quantile S 0.5 quantile
-~ 0.025-0975 CRI 3 -~ 0.025-0975 CRI
o &
@
B
o |
@ ©
4 . 3
g < §
5 ke
H s
g o £
3 S S <
h
<
24
g .
o
o
o | el T e o | e T T
3 3
T T T T T T T T T T T T T
0 5000 10000 15000 20000 o 2 4 6 8 10 12 14
Range Time

B. Taylor Log-Gaussian Cox Processes



Exceedance Probabilities

R> sp <- exceedProbs(c(2/3, 1/2, 1/5, 1/10),

+ direction = "lower")
R> su <- 1lgcp:::expectation.lgcpPredict(lg, sp)
R> plotExceed(sul[1]1], "sp", 1lg,

R> ep <- exceedProbs(c(1.5, 2, 5, 10))
R> ex <- lgcp:::expectation.lgcpPredict(lg, ep)
R> plotExceed(ex[[1]], "ep", 1g,

+ zlim = c(0,1), asp = 1, + zlim = ¢c(0, 1), asp = 1
+ axes = FALSE, xlab = ", + axes = FALSE, xlab = "
+ ylab = "", sub = "") " ylab = "" S;b = ) ’
R> scalebar(5000, label = "5 km'") R> scalebar(5000, label = "5 km") 20
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Conditional Probabilities, Segregation Probabilities
Conditional Probabilities:
px = P{a case at location s is of type k|there is a case at s}

Segmentation Probabilities:
e Let Ax(c, g) denote the set of locations x for which
P{p«(x) > c|X} > q.
e c is the "dominance probability”
e c,qg—1= Ax(c,p) =0

e happens more slowly in a highly segregated pattern compared
with a weakly segregated one

o Compute P{pk(x) > c|X}
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Conditional Probabilities, Segregation Probabilities

R> condProbs(1lg) R> segProbs(1lg,domprob=0.8)
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Conclusions

e Four classes of log-Gaussian Cox processes

e A software package, 1gcp, for MCMC-based inference for
these models

e ... more functionality ...
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