Methods and an R package for Bayesian inference with log-Gaussian Cox processes http://cran.r-project.org/web/packages/lgcp

Benjamin M. Taylor

http://www.lancaster.ac.uk/staff/taylorb1
loint work with Tilman Davies, Barry Rowlingson and Peter Di

(Joint work with Tilman Davies, Barry Rowlingson and Peter Diggle)

- Motivation
- 2 Methods
- 3 An R Package
- 4 Examples
- **6** Conculsions/Future

Spatial Point Process Data

- Primary biliary cirrhosis in Newcastle-Upon-Tyne
- 415
 geo-referenced
 cases of
 definite or
 probable
 primary biliary
 cirrhosis (PBC)
 alive between
 1987 and 1994.

Aggregated Spatial Point Process Data

- Again, Primary biliary cirrhosis in Newcastle-Upon-Tyne
- This time suppose we only observe case numbers aggregated to regions

Spatiotemporal Point Process Data

- Ascertainment and Enhancement of Gastroenteric Infection Surveillance Statistics
- Calls to NHS direct

Multivariate Spatial Point Process Data

- 873 genotyped cases of bovine tuberclosis breakdowns in Cornwall herds (1989–2002)
- Is there spatial segregation? (related to potential transmission mechanisms)

The log-Gaussian Cox Process

Gaussian process: A stochastic process Y(s) where $s \in \mathbb{R}^d$ is a Gaussian process if any finite collection $[Y(s_1), \ldots, Y(s_n)]$ has a multivariate Gaussian distribution.

(Spatial/ spatiotemporal) Poisson process: A stochastic process that counts the number of events in a given spatial/spatiotemporal region.

Intensity process: a non-negative valued stochastic process $\Lambda: S \mapsto [0, \infty)$ where $S \subset \mathbb{R}^d$; typically d=2.

Cox process: An inhomogenegous Poisson process with stochastic intensity Λ .

log-Gaussian Cox process: a Cox process where log Λ is a Gaussian process

The log-Gaussian Cox Process

If X is a Cox process, then conditional on Λ , we have for any finite observation window $W \subseteq S$

number of
$$X$$
 in $W \sim \text{Poisson}\left(\int_W \Lambda(s)ds\right)$

- We think of X as being continuous in space
- In practice, for computational reasons, we treat *X* as piecewise constant on a fine grid.

Example: Spatial Point Process

Let X(s) denote the number of events in a grid cell containing s.

$$X(s) \sim \text{Poisson}[\Lambda(s)]$$

 $\Lambda(s) = C_A \lambda(s) \exp\{Z(s)\beta + Y(s)\}$

- C_A is the area of the grid cell containing s (regular grid).
- Z(s) is a vector of covariates particular to the grid cell containing s
- Y(s) is the value of the Gaussian process Y in the grid cell containing s

Bayesian Inference

Given some observed data X, we use the posterior density:

$$\pi(\beta, Y, \eta|X) \propto \pi(X|\beta, Y, \eta)\pi(\beta, Y, \eta)$$

for Bayesian inference.

- $\eta = \{\sigma, \phi\}$ are parameters that control the properties of Y (respectively variance and spatial dependence)
- We assume $\pi(X|\beta, Y, \eta) = \pi(X|\beta, Y)$

Markov Chain Monte Carlo

Independent block proposal scheme. A mix of:

- Langevin kernels for Y and β
- ullet A random walk kernel for η

Algorithm tuning:

- Design the proposal covariance using a quadratic approximation to the posterior.
- Adaptively tune the chain to maintain acceptance rate of 0.574 to suit Langevin kernels

Igcp Log-Gaussian Cox Processes in R

Aggregated Spatial Point Process Data

- Observe number of events T_i in each region A_i
- Augment the list of parameters, {β, η, Y}, with an additional variable N, the unobserved cell count (akin to X)
- Seek to sample from:

$$\pi(\beta, \eta, Y, N | T_1, \ldots, T_m).$$

• Use a Gibbs scheme, alternately sampling from $\pi(\beta, \eta, Y|N, T_{1:m})$ and $\pi(N|\beta, \eta, Y, T_{1:m})$

Spatiotemporal Point Process Data

Model:

$$X(s,t) = Poisson[R(s,t)]$$

 $R(s,t) = C_A \lambda(s,t) \exp\{Z(s,t)\beta + Y(s,t)\}$

- Similar in notation to spatial case: (s, t) instead of (s)
- Assume a separable spatiotemporal covariance function for Y:

$$cov[Y(s_1, t_1), Y(s_2, t_2)] = \sigma^2 \exp\{-||s_2 - s_1||/\phi - |t_2 - t_1|/\theta\}.$$

• θ determines the temporal correlation in the process Y.

Multivariate Spatial Point Process Data

Model for multitype process with K types, for $k \in 1, ..., K$,

$$X_k(s) = Poisson[R_k(s)]$$

$$R_k(s) = C_A \lambda_k(s) \exp\{Z(s)_k \beta_k + Y_k(s) + Y_{K+1}(s)\}$$

- X_k(s) is the number of events of type k
 in the computational grid cell containing
 the point s
- Y_{K+1} captures areas of high or low intensity that are common to all types

Convergence/Mixing Diagnostics

Convergence/Mixing Diagnostics

R> parautocorr(lg)


```
R> lagch <- c(1, 5, 15)
R> Sacf <- autocorr(lg, lagch,
+ inWindow = NULL)</pre>
```


Lag: 1

Plots of Prior and Posterior

R> priorpost(lg)

Tabulate Results

```
R> parsum <- parsummary(lg, LaTeX = TRUE)
R> require("miscFuncs")
```

R> latextable(parsum, rownames = rownames(parsum),

+ colnames = c("Parameter", colnames(parsum)), digits = 4)

Parameter	median	lower 95% CRI	upper 95% CRI
σ	0.7999	0.6033	0.9695
ϕ	637.1	389.3	1098
$exp(\beta_{(Intercept)})$	4.111×10^{-7}	8.735×10^{-9}	3.019×10^{-5}
$\exp(\beta_{pop})$	3.162	2.633	3.84
$exp(\beta_{propmale})$	1.328×10^{-5}	3.937×10^{-9}	4.62×10^{-2}
$exp(\beta_{Income})$	0.5449	1.425×10^{-2}	23.05
$exp(\beta_{Employment})$	52.73	0.2343	9981
$exp(\beta_{Education})$	0.9961	0.9797	1.012
$exp(\beta_{Barriers})$	0.982	0.9594	1.007
$exp(\beta_{Crime})$	0.9034	0.6956	1.223
$exp(\beta_{Environment})$	1.015	0.9967	1.035

R> textsummary(lg)

A summary of the parameters of the latent field is as follows. The parameter σ had median $8{\times}10^{-1}$ (95% CRI 0.603 to 0.97) and the parameter ϕ had median 637 (95% CRI 389 to 1098).

The following effects were found to be significant: each unit increase in propmale led to a reduction in relative risk with median 1.33×10^{-5} (95% CRI 3.94×10^{-9} to 4.62×10^{-2}); each unit increase in pop led to a increase in relative risk with median 3.16 (95% CRI 2.63 to 3.84).

The remainder of the . . .

Posterior Correlation Function

R> postcov(lg)

Exceedance Probabilities

```
R> sp <- exceedProbs(c(2/3, 1/2, 1/5, 1/10),
R> ep <- exceedProbs(c(1.5, 2, 5, 10))
                                                                                     direction = "lower")
R> ex <- lgcp:::expectation.lgcpPredict(lg, ep)
                                                       R> su <- lgcp:::expectation.lgcpPredict(lg, sp)
R> plotExceed(ex[[1]], "ep", lg,
                                                       R> plotExceed(su[[1]], "sp", lg,
        zlim = c(0,1), asp = 1,
                                                                zlim = c(0, 1), asp = 1,
        axes = FALSE, xlab = "",
                                                                axes = FALSE, xlab = "",
        vlab = "", sub = "")
                                                                vlab = "", sub = "")
R> scalebar(5000, label = "5 km")
                                                       R> scalebar(5000, label = "5 km")
                                               - 0.6
                                                               5 km
        5 km
                                                                     \mathbb{P}\left\{ \text{Relative Risk} < \frac{1}{2} \right\}
               \mathbb{P}\{\text{Relative Risk} > 2\}
```

Conditional Probabilities, Segregation Probabilities

Conditional Probabilities:

 $p_k = \mathbb{P}\{\text{a case at location } s \text{ is of type } k | \text{there is a case at } s\}$

Segmentation Probabilities:

- Let $A_k(c,q)$ denote the set of locations x for which $\mathbb{P}\{p_k(x)>c|X\}>q$.
- c is the "dominance probability"
- $c, q \to 1 \Rightarrow A_k(c, p) \to \emptyset$
- happens more slowly in a highly segregated pattern compared with a weakly segregated one
- Compute $\mathbb{P}\{p_k(x) > c|X\}$

Conditional Probabilities, Segregation Probabilities

R> condProbs(lg)

R> segProbs(lg,domprob=0.8)

Conclusions

- Four classes of log-Gaussian Cox processes
- A software package, 1gcp, for MCMC-based inference for these models
- ... more functionality ...