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Motivating Applications

Question arising in studies of brain activations:
“Where are the activations located in brain?”

Question arising in brain network analysis:
“What is the spatio-temporal distribution of
oscillations in brain?”

Question arising in satellite positioning systems:
“How can we predict the satellite position as
accurately as possible?”

Question arising in weather nowcasting:
“How to predict/interpolate the evolution of
precipitation?”

Common characteristics: a huge number of
data points, mainly in temporal direction.

Simo Särkkä (Aalto) Efficient spatio-temporal GP models November, 2013 4 / 27



Representations of Temporal Gaussian Processes
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Representations of Temporal Gaussian Processes (cont.)

Example: Ornstein-Uhlenbeck process f (t) – path representation as a
stochastic differential equation (SDE):

df (t)

dt
= −λ f (t) + w(t).

where w(t) is a white noise process.

The mean and covariance functions:

m(t) = 0

k(t, t ′) = exp(−λ|t − t ′|)

Spectral density:

S(ω) =
2λ

ω2 + λ2

Ornstein-Uhlenbeck process f (t) is Markovian – very efficient
Bayesian inference possible with Kalman filter and smoother.
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Rational Spectral Densities

The key is the rational spectral density:

S(ω) =
(polynomial in ω2)

(polynomial in ω2)

There always exists a state-space model with such a spectral density:

df(t)

dt
= A f(t) + Lw(t)

f (t) = Hf(ti ).

↪→ We can convert a large class of GPs into state-space models:

X The Matérn class has this form:

S(ω) ∝ (λ2 + ω2)−(p+1).

X Non-rational spectral densities can be easily approximated:

S(ω) = σ2

√
π

κ
exp

(
−ω

2

4κ

)
≈ (const)

a0 + a1 ω2 + · · ·+ aN ω2N
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Application to Gaussian Process Regression / Kriging

Gaussian process regression (or Kriging) problems have the form

f (x) ∼ GP(0, k(x , x ′))

yi = f (xi ) + ei , ei ∼ N (0, σ2
noise).

The computational complexity is awful O(n3), where n is the number
of measurements.

Renaming x into time t gives us a temporal model:

f (t) ∼ GP(0, k(t, t ′))

yi = f (ti ) + ei , ei ∼ N (0, σ2
noise).

By converting into state-space form we get a model of the form:

df(t)

dt
= A f(t) + Lw(t)

yi = Hf(ti ) + ei .
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Kalman Filter and Rauch-Tung-Striebel Smoother

Recall that Kalman filter and RTS smoother are algorithms for
Bayesian inference in linear state-space models:

df(t)

dt
= A f(t) + Lw(t)

yi = Hf(ti ) + ei

Computational efficiency by utilizing Markov properties of Itô
stochastic differential equations (SDEs).

↪→ Many Gaussian process regression and Kriging problems can be
efficiently solved with KF & RTS:

X With n measurements, complexity of KF/RTS is O(n), when the
brute-force GP regression solution is O(n3).

X Straight-forward generalization to non-linear/non-Gaussian models via
non-linear Kalman and particle filtering/smoothing .
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Example: Matérn Covariance Function

Example (1D Matérn covariance function)

1D Matérn family is (τ = |t − t ′|):

k(τ) = σ2 21−ν

Γ(ν)

(√
2ν

τ

l

)ν
Kν

(√
2ν

τ

l

)
,

where ν, σ, l > 0 are the smoothness, magnitude and length scale
parameters, and Kν(·) the modified Bessel function.

For example, when ν = 5/2, we get

df(t)

dt
=

 0 1 0
0 0 1
−λ3 −3λ2 −3λ

 f(t) +

0
0
1

 w(t).
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From Temporal to Spatio-Temporal Processes

The temporal vector-valued process becomes an infinite-dimensional
function (Hilbert space) -valued process:

f(t) =

f1(t)
...

fn(t)

→
f (x1, t)

...
f (xn, t)

→ f (x, t), x ∈ Rd .
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Infinite-Dimensional Kalman Filtering and Smoothing

Spatio-temporal Gaussian process regression (or Kriging) problem:

f (x, t) ∼ GP(0, k(x, t; x′, t ′))

yi = f (xi , ti ) + ei , ei ∼ N (0, σ2
noise).

Leads to an infinite-dimensional model with operators A and Hi :

∂f(x, t)

∂t
= A f(x, t) + Lw(x, t)

yi = Hi f(x, ti ) + ei

We can use the infinite-dimensional Kalman filter and RTS smoother
– scale linearly in time dimension.

Solution with PDE methods such as basis function expansions, FEM,
finite-differences, spectral methods, etc.
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Example: 2D Matérn Covariance Function

Example (2D Matérn covariance function)

The multidimensional Matérn covariance function is the following
(r = ||ξ − ξ′||, for ξ = (x1, x2, . . . , xd−1, t) ∈ Rd):

k(r) = σ2 21−ν

Γ(ν)

(√
2ν

r

l

)ν
Kν

(√
2ν

r

l

)
.

For example, if ν = 1 and d = 2, we get the following:

∂f(x , t)

∂t
=

(
0 1

∂2/∂x2 − λ2 −2
√
λ2 − ∂2/∂x2

)
f(x , t)+

(
0
1

)
w(x , t).

x

t
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The Basic Idea of State-Space Representation

A latent force model is of the form

dz(t)

dt
= g(z(t)) + u(t),

where u(t) is the latent force.

We measure the system at discrete instants of time:

yk = z(tk) + rk

Let’s now model u(t) as a Gaussian process of Matern type

k(τ) = σ2 21−ν

Γ(ν)

(√
2ν

τ

l

)ν
Kν

(√
2ν

τ

l

)
Recall that if, for example, ν = 1/2 then the GP can be expressed as
the solution of the stochastic differential equation (SDE)

du(t)

dt
= −λ u(t) + w(t)
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The Basic Idea of State-Space Representation (cont.)

If we define f = (z , u), we get a two-dimensional SDE

df

dt
=

(
g(f1(t)) + f2(t)
−λ f2(t)

)
︸ ︷︷ ︸

a(f)

+

(
0
1

)
︸︷︷︸

L

w(t)

We can now rewrite the measurement model as

yk =
(
1 0

)︸ ︷︷ ︸
H

f(tk) + rk

Thus the result is a model of the generic form

df

dt
= a(f) + Lw(t)

yk = Hf(tk) + rk .

X Solution via non-linear Kalman/particle filtering and smoothing.

X Extends to spatio-temporal systems (PDEs).
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GPS Satellite Orbit Prediction: Model

Accurate orbit prediction improves
Time To First Fix (TTFF) when
network is not available for A-GPS.

The equation of motion for the satellite
can be written as

d

dt

[
r
v

]
=

[
v

a(r, t) + u(r, v, t)

]
.

The model for acceleration is

a(r, t) = ag + amoon + asun + asrp.

Most modeling errors reside in the solar radiation pressure asrp

Unknown forces u(r, v, t) modeled as state-space GPs.
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GPS Satellite Orbit Prediction: Prediction Results
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Spatio-Temporal Modeling of Precipitation
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Spatio-temporal interpolation of precipitation levels based on monthly
data, years 1895–1997, Colorado, US.

We used an infinite-dimensional state-space GP model with the
non-separable spatio-temporal Matérn covariance function.

Truncated eigenfunction expansion of the Laplace operator with 384
eigenfunctions.
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Oscillatory Structures in fMRI Brain Data
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Spatio-temporal estimation of heart beat induced oscillations in fMRI
brain data (measured at AMI centre, Finland).

Superposition of spatio-temporal oscillators (GPs as well):

∂2fj(x, t)

∂t2
+ Aj

∂fj(x, t)

∂t
+ Bj fj(x, t) = ξj(x, t).

Spatial smoothness controlled by the spectral density kernel of ξj(·, t).
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Conclusion

Gaussian processes (and fields) have different representations:

Covariance function.
Spectral density.
Stochastic (partial) differential equation – a state space model.

We can often convert between the representations:

Rational spectral densities ⇔ state-space models.
Spatio-temporal models ⇔ infinite-dimensional state-space models.

Kalman filter and RTS smoother are algorithms for linear-time
inference in state-space models (O(n) vs. O(n3)).

State-space methods for latent force models:

GP models can be combined with differential equations.
The resulting model can be expressed as a state-space model.
Efficient Bayesian computation with non-linear filtering and smoothing.
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Note on Non-Markovian SPDE Models

Let’s consider the following Whittle SPDE

∂2f (x , t)

∂x2
+
∂2f (x , t)

∂t2
− λ2 f (x , t) = w(x , t),

where w(x , t) is a space–time white Gaussian random field.

The covariance function is the same Matérn covariance function as in
the previous example and with ν = 1 and d = 2

We can now form a state-space model by defining f = (f , ∂f /∂t):

∂f(x , t)

∂t
=

(
0 1

λ2 − ∂2/∂x2 0

)
f(x , t) +

(
0
1

)
w(x , t),

– but this state-space representation is different from the example!

The catch is that the above model is non-Markovian whereas the one
in the example is Markovian – we still need the spectral factorization.
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Inference in Practice

Conventional GP regression / Kriging:
1 Evaluate the covariance function at the training and test set points.
2 Use GP regression formulas to compute the posterior process statistics.
3 Use the mean function as the prediction.

State-space GP regression:
1 Form the state space model.
2 Run Kalman filter through the measurement sequence.
3 Run RTS smoother through the filter results.
4 Use the smoother mean function as the prediction.

With both GP regression and state-space formulation we have the
corresponding parameter estimation methods – see, e.g., Rasmussen
& Williams (2006) and Särkkä (2013), respectively.
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