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Motivating Applications

@ Question arising in studies of brain activations:
“Where are the activations located in brain?"

@ Question arising in brain network analysis:
“What is the spatio-temporal distribution of
oscillations in brain?”

@ Question arising in satellite positioning systems:
“How can we predict the satellite position as
accurately as possible?”

@ Question arising in weather nowcasting:
“How to predict/interpolate the evolution of
precipitation?”

@ Common characteristics: a huge number of
data points, mainly in temporal direction.
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Representations of Temporal Gaussian Processes
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Representations of Temporal Gaussian Processes (cont.)

@ Example: Ornstein-Uhlenbeck process f(t) — path representation as a
stochastic differential equation (SDE):

df(t) _
o = —Af(t) 4+ w(t).

where w(t) is a white noise process.

@ The mean and covariance functions:
m(t) =0
k(t,t") = exp(=Alt — t'))

@ Spectral density:
2\

T w2+ N2
o Ornstein-Uhlenbeck process f(t) is Markovian — very efficient
Bayesian inference possible with Kalman filter and smoother.

S(w)
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Rational Spectral Densities

@ The key is the rational spectral density:

. . 2
S(w) = (polynomial in w*)

(polynomial in w?)
@ There always exists a state-space model with such a spectral density:
df(t)
—= = Af(t)+ Lw(t
= Af() + Lw(t)
f(t) =Hf(t).
— We can convert a large class of GPs into state-space models:
v" The Matérn class has this form:
S(w) o< (A2 + w?)~ (D),

v Non-rational spectral densities can be easily approximated:

T w? (const)
S) =0/ T exp (=) ~
(w) =%/ exp( 45) Bt a T ay N
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Application to Gaussian Process Regression / Kriging

@ Gaussian process regression (or Kriging) problems have the form
f(x) ~ GP(0, k(x,x"))
yi = f(x) + e, ei ~ N(0,

n0|se)

@ The computational complexity is awful O(n3), where n is the number
of measurements.

@ Renaming x into time t gives us a temporal model:

f(t) ~ GP(0,k(t,t))

Yi = f(ti)+ef7 NN( n0|se)
@ By converting into state-space form we get a model of the form:
df(t)
—= = Af(t)+ Lw(t
L = Af(r) + Lw()
Yi= H f(t,') + e;.
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Kalman Filter and Rauch-Tung-Striebel Smoother

@ Recall that Kalman filter and RTS smoother are algorithms for
Bayesian inference in linear state-space models:
df(t)
—— =Af(t)+Lw(t
L = Af()+ Lw(t)
yi=H f(t,') + e

o Computational efficiency by utilizing Markov properties of It
stochastic differential equations (SDEs).

— Many Gaussian process regression and Kriging problems can be
efficiently solved with KF & RTS:

v With n measurements, complexity of KF/RTS is O(n), when the
brute-force GP regression solution is O(n®).

v Straight-forward generalization to non-linear/non-Gaussian models via
non-linear Kalman and particle filtering/smoothing .
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Example: Matérn Covariance Function

Example (1D Matérn covariance function)
o 1D Matérn family is (7 = [t — t'|):

]__

k() = o2 o ; <\/Z§>VKV <@§)7

where v, g,/ > 0 are the smoothness, magnitude and length scale
parameters, and K, (-) the modified Bessel function.

@ For example, when v =5/2, we get

o 1 o 0

f

dd—(tt): o 0o 1 |fe+ (o) w.
X —3x2 —3) 1
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From Temporal to Spatio-Temporal Processes

One Time Series (n = 1) Multiple Time Series (n = 34) Random Field (n — cc)

N/
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The temporal vector-valued process becomes an infinite-dimensional
function (Hilbert space) -valued process:

ﬂ(t) f(Xl, t')
fy=1 : | = : — f(x,t), xe&R%
fa(t) f(xn, t)
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Infinite-Dimensional Kalman Filtering and Smoothing

@ Spatio-temporal Gaussian process regression (or Kriging) problem:
f(x,t) ~ GP(0, k(x, t; X', t'))
Yi = f(xi7 ti)+ei’ eiNN(O’Ur%oise)'
@ Leads to an infinite-dimensional model with operators A and J;:

of(x, t)
ot

= Af(x,t) + Lw(x,t)
yi = H; f(X, t,') +e;

@ We can use the infinite-dimensional Kalman filter and RTS smoother
— scale linearly in time dimension.

@ Solution with PDE methods such as basis function expansions, FEM,
finite-differences, spectral methods, etc.
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Example: 2D Matérn Covariance Function

Example (2D Matérn covariance function)

@ The multidimensional Matérn covariance function is the following
(r=11&—¢|, for & = (x1,x2, ..., x4-1,t) € RY):

2 () 6 (V).

T / I

r(v)

@ For example, if v =1 and d = 2, we get the following:

k(r)

Of (x, t) 0 1 0
2 f(x,t t).
ot (32/3x2—>\2 2 A2—82/8x2) G +(1) a
o s U TR IR
’ ‘_-.'**;ﬁj‘g b AR T
* :'}g‘."'"‘:‘._‘ ': # \? '"“4 B

v
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The Basic ldea of State-Space Representation

@ A latent force model is of the form

PO _ gla(e)) + o),

where u(t) is the latent force.
@ We measure the system at discrete instants of time:
Yk = 2(tk) + r
o Let's now model u(t) as a Gaussian process of Matern type

)= B (VBT 6 (V)

@ Recall that if, for example, v = 1/2 then the GP can be expressed as
the solution of the stochastic differential equation (SDE)
du(t)
dt

= —Au(t) + w(t)
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The Basic Idea of State-Space Representation (cont.)

o If we define f = (z, u), we get a two-dimensional SDE

 _ (g(flft;)ﬁtt')‘z(ﬂ) | (2) w(t)
- —~—

a(f) L

@ We can now rewrite the measurement model as

Yk = (1 0) f(tk) + ry
~——
H
@ Thus the result is a model of the generic form
df
o a(f) + Lw(t)
Yk = H f(tk) =+ rg.
v" Solution via non-linear Kalman/particle filtering and smoothing.
v" Extends to spatio-temporal systems (PDEs).
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GPS Satellite Orbit Prediction: Model

@ Accurate orbit prediction improves
Time To First Fix (TTFF) when
network is not available for A-GPS.

@ The equation of motion for the satellite
can be written as

% m N [a(r, t) +VU(r,V, t)] '

@ The model for acceleration is
a(r, t) = ag ~+ @moon + Asun + Asrp-

@ Most modeling errors reside in the solar radiation pressure ag,

@ Unknown forces u(r,v, t) modeled as state-space GPs.
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GPS Satellite Orbit Prediction: Prediction Results

5
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Spatio-Temporal Modeling of Precipitation

@
3
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@ Spatio-temporal interpolation of precipitation levels based on monthly
data, years 1895-1997, Colorado, US.

@ We used an infinite-dimensional state-space GP model with the
non-separable spatio-temporal Matérn covariance function.

@ Truncated eigenfunction expansion of the Laplace operator with 384
eigenfunctions.
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Oscillatory Structures in fMRI Brain Data

O
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@ Spatio-temporal estimation of heart beat induced oscillations in fMRI
brain data (measured at AMI centre, Finland).

Spatially Independent
Spatio-Temporal

Amplitude

@ Superposition of spatio-temporal oscillators (GPs as well):

0%fi(x, t ofi(x, t
3(1:2 ) A J<(9t i Bjfi(x, t) = &(x, t).

@ Spatial smoothness controlled by the spectral density kernel of (-, t).
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Conclusion

@ Gaussian processes (and fields) have different representations:

e Covariance function.
o Spectral density.
o Stochastic (partial) differential equation — a state space model.

@ We can often convert between the representations:

o Rational spectral densities < state-space models.
e Spatio-temporal models < infinite-dimensional state-space models.

o Kalman filter and RTS smoother are algorithms for linear-time
inference in state-space models (O(n) vs. O(n%)).

@ State-space methods for latent force models:

o GP models can be combined with differential equations.
o The resulting model can be expressed as a state-space model.
o Efficient Bayesian computation with non-linear filtering and smoothing.

Simo Sarkka (Aalto) Efficient spatio-temporal GP models November, 2013 24 /27



Key References

State-Space Representation of Temporal & Spatio-Temporal GPs

| SignalProcessing
Simo Sarkka, Arno Solin, and Jouni Hartikainen PEmEL
(2013). Spatio-Temporal Learning via Infinite- |,
Dimensional Bayesian Filtering and Smoothing. |IEEE Y :g
Signal Processing Magazine, 30(5):51-61. MR

Filtering and
Smoothing

Simo Sarkka (2013). Bayesian Filtering and Smoothing. e
Cambridge University Press.

Simo Sarkka (Aalto) Efficient spatio-temporal GP models November, 2013 25 /27



Note on Non-Markovian SPDE Models

o Let's consider the following Whittle SPDE

0*f(x,t)  O*F(x,t) .,
92 -+ 92 A° f(x,t) = w(x, t),
where w(x, t) is a space-time white Gaussian random field.

@ The covariance function is the same Matérn covariance function as in
the previous example and with v =1 and d = 2

@ We can now form a state-space model by defining f = (f,9f /0t):

Toet= (e oy o) 81+ (3) wirt

— but this state-space representation is different from the example!

@ The catch is that the above model is non-Markovian whereas the one
in the example is Markovian — we still need the spectral factorization.
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Inference in Practice

e Conventional GP regression / Kriging:
@ Evaluate the covariance function at the training and test set points.
@ Use GP regression formulas to compute the posterior process statistics.
© Use the mean function as the prediction.
@ State-space GP regression:
@ Form the state space model.
@ Run Kalman filter through the measurement sequence.
© Run RTS smoother through the filter results.
© Use the smoother mean function as the prediction.
o With both GP regression and state-space formulation we have the
corresponding parameter estimation methods — see, e.g., Rasmussen
& Williams (2006) and Sarkka (2013), respectively.
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