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I Modern data availability.
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Abstract

We introduce stochastic variational inference
for Gaussian process models. This enables
the application of Gaussian process (GP)
models to data sets containing millions of
data points. We show how GPs can be vari-
ationally decomposed to depend on a set
of globally relevant inducing variables which
factorize the model in the necessary manner
to perform variational inference. Our ap-
proach is readily extended to models with
non-Gaussian likelihoods and latent variable
models based around Gaussian processes. We
demonstrate the approach on a simple toy
problem and two real world data sets.

1 Introduction

Gaussian processes [GPs, Rasmussen and Williams,
2006] are perhaps the dominant approach for inference
on functions. They underpin a range of algorithms
for regression, classification and unsupervised learn-
ing. Unfortunately, when applying a Gaussian process
to a data set of size n exact inference has complexity
O(n3) with storage demands of O(n2). This hinders
the application of these models for many domains. In
particular, large spatiotemporal data sets, video, large
social network data (e.g. from Facebook), population
scale medical data sets, models that correlate across
multiple outputs or tasks (for these models complex-
ity is O(n3p3) and storage is O(n2p2) where p is the
number of outputs or tasks). Collectively we can think
of these applications as belonging to the domain of ‘big
data’.

Traditionally in Gaussian process a large data set is
one that contains over a few thousand data points.

∗Also at Sheffield Institute for Translational Neuro-
science, SITraN

Even to accommodate these data sets, various approx-
imate techniques are required. One approach is to par-
tition the data set into separate groups [e.g. Snelson
and Ghahramani, 2007, Urtasun and Darrell, 2008].
An alternative is to build a low rank approximation
to the covariance matrix based around ‘inducing vari-
ables’ [see e.g. Csató and Opper, 2002, Seeger et al.,
2003, Quiñonero Candela and Rasmussen, 2005, Tit-
sias, 2009]. These approaches lead to a computational
complexity of O(nm2) and storage demands of O(nm)
where m is a user selected parameter governing the
number of inducing variables. However, even these
reduced storage are prohibitive for big data, where
n can be many millions or billions. For parametric
models, stochastic gradient descent is often applied to
resolve this storage issue, but in the GP domain, it
hasn’t been clear how this should be performed. In
this paper we show how recent advances in variational
inference [Hensman et al., 2012, Hoffman et al., 2012]
can be combined with the idea of inducing variables
to develop a practical algorithm for fitting GPs using
stochastic variational inference (SVI).

2 Sparse GPs Revisited

We start with a succinct rederivation of the variational
approach to inducing variables of Titsias [2009]. This
allows us to introduce notation and derive expressions
which allow for the formulation of a SVI algorithm.

Consider a data vector1 y, where each entry yi is a
noisy observation of the function f(xi), for all the
points X = {xi}ni=1. We consider the noise to be in-
dependent Gaussian with precision β. Introducing a
Gaussian process prior over f(·), let the vector f con-
tain values of the function at the points X. We shall
also introduce a set of inducing variables: let the vec-
tor u contain values of the function f at the points
Z = {zi}mi=1 which live in the same space as X. Us-

1Our derivation trivially extends to multiple indepen-
dent output dimensions, but we omit them here for clarity.

http://auai.org/uai2013/prints/papers/244.pdf
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Figure 4: Convergence of the SVIGP algorithm on the
two dimensional toy data

land-registry-monthly-price-paid-data/, which
covers England and Wales, and filtered for apart-
ments. This resulted in a data set with 75,000 entries,
which we cross referenced against a postcode database
to get lattitude and longitude, on which we regressed
the normalised logarithm of the apartment prices.

Randomly selecting 10,000 data as a test set, we build
a GP as described with a covariance function k(·, ·)
consisting of four parts: two squared exponential co-
variances, initialised with different length scales were
used to account for national and regional variations in
property prices, a constant (or ’bias’) term allowed for
non-zero mean data, and a noise variance accounted
for variation that could not be modelled using simply
latitude and longitude.

We selected 800 inducing input sites using a k-means
algorithm, and optimised the parameters of the co-
variance function alongside the variational parameters.
We performed some manual tuning of the learning
rates: empirically we found that the step length should
be much higher for the variational parameters of q(u)
than for the values of the covariance function parame-
ters. We used 0.01 and 1× 10−5. Also, we included a
momentum term for the covariance function parame-
ters (set to 0.9). We tried including momentum terms
for the variational parameters, but we found this hin-
dered performance. A large mini-batch size (1000) re-
duced the stochasticity of the gradient computations.
We judged that the algorithm had converged after 750
iterations, as the stochastic estimate of the marginal
lower bound on the marginal likelihood failed to in-
crease further.

For comparison to our model, we constructed a se-
ries of GPs on subsets of the training data. Splitting
the data into sets of 500, 800, 1000 and 1200, we fit-

Figure 5: Variability of apartment price (logarithmi-
cally!) throughout England and Wales.

ted a GP with the same covariance function as our
stochastic GP. Parameters of the covariance function
were optimised using type-II maximum likelihood for
each batch. Table 1 reports the mean squared error in
our model’s prediction of the held out prices, as well
as the same for the random sub-set approach (along
with two standard deviations of the inter-sub-set vari-
ability).

Table 1: Mean squared errors in predicting the log-
apartment prices across England and Wales by latti-
tude and longitude

Mean square Error

SVIGP 0.426
Random sub-set (N=500) 0.522 +/- 0.018
Random sub-set (N=800) 0.510 +/- 0.015
Random sub-set (N=1000) 0.503 +/- 0.011
Random sub-set (N=1200) 0.502 +/- 1.012

4.3 Airline Delays

The second large scale dataset we considered consists
of flight arrival and departure times for every commer-
cial flight in the USA from January 2008 to April 2008.
This dataset contains extensive information about al-
most 2 million flights, including the delay (in minutes)
in reaching the destination. The average delay of a
flight in the first 4 months of 2008 was of 30 minutes.
Of course, much better estimates can be given by ex-
ploiting the enourmous wealth of data available, but
rich models are often overlooked in these cases due

http://auai.org/uai2013/prints/papers/244.pdf


What’s Changed (Changing) for Medicine?

I Try Googling for: “patient data ”...
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A brief history of registration
The early days
Prior to the appearance of the first railways in Britain, there was a brief development and interest 
in steam powered road going vehicles.  In 1834, a Mr Hancock started a steam coach called the 
“Era”, carrying up to 14 passengers from Paddington to Regents Park and the City at 6d a head. 
And in the following year, a Mr Church built an omnibus capable of carrying 40 passengers for 
the London and Birmingham Steam Carriage Company.

However, the success of the railway movement drove all such traffic off the roads.  
A Parliamentary Commission of Enquiry in 1836 reported “strongly in favour of steam 
carriages on roads”, but subsequent Acts of Parliament tended to have a discouraging and 
restrictive effect. The Locomotive Act 1861 limited the weight of steam engines to 12 tons 
and imposed a speed limit of 10 mph.

The Locomotive Act 1865 set a speed limit of 4 mph in the country and 2 mph in towns. 
The 1865 Act also provided for the famous “man with a red flag”. Walking 60 yards ahead 
of each vehicle, a man with a red flag or lantern enforced a walking pace, and warned horse 
riders and horse drawn traffic of the approach of a self propelled machine.

The Locomotive Amendment Act 1878 made the red flag optional under local regulations, and 
reduced the distance of warning to a more manageable 20 yards. But this did not make life much 
easier for the motorist. Although British engineers were working on electrical and combustion 
engines, and motor vehicles had been patented as early as 1882, they were never developed.

The arrival of the modern motor car
The Locomotive and Highways Act 1896 enabled faster and more popular light motor vehicles 
to be used. Around this time Britain saw its first ever petrol driven car, either the 1888 Benz 
now in the Science Museum in London, or the Benz imported by Henry Hewetson in 1894. 
1896 saw the first British built Daimler – it looked more like a carriage than a car, but it was the 
forerunner of the modern motor car.

The 1896 Act was the first improvement in the motoring laws to encourage motor vehicles. 
Vehicles under 3 tons were exempted from the requirements of the 1878 Act and the speed 
limit was raised to 14 mph, or to a lower limit prescribed by a local government board. Lights 
also became compulsory along with “an instrument capable of giving audible and sufficient 
warning”. Every heavy locomotive (with certain exceptions) had to be licensed by the County 
or County Borough Council. The excepted cases, however, still had to be registered. 

Regulations passed soon afterwards also provided for a speed limit of 12 mph; keeping to the 
left when passing on-coming carriages, horses and cattle and to the right when overtaking; 
and stopping the vehicle at the request of any police constable or person “in charge of a 
restive horse”.

To celebrate the lifting of the restrictions the newly formed British Motor Car Club staged 
an informal drive from London to Brighton. Fifty eight vehicles entered, thirty five started, 
and twenty five arrived safely in Brighton. Before the start, the Earl of Winchester solemnly 
tore up a symbolic red flag – this event is still commemorated in November each year (the 
London to Brighton run).

http://www.direct.gov.uk/prod_consum_dg/groups/dg_digitalassets/@dg/@en/@motor/documents/digitalasset/dg_180212.pdf
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What’s Changed (Changing) for Medicine?

I Genotyping.
I Epigenotyping.
I Transcriptome: detailed characterization of phenotype.

I Stratification of data.



Open Data

I Automatic data curation: from curated data to curation of
publicly available data.

I Open Data: http://www.openstreetmap.org/?lat=53.
38086&lon=-1.48545&zoom=17&layers=M.

I Social network data, music information (Spotify), exercise.

http://www.openstreetmap.org/?lat=53.38086&lon=-1.48545&zoom=17&layers=M
http://www.openstreetmap.org/?lat=53.38086&lon=-1.48545&zoom=17&layers=M
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Data Sources

I UK Goverment Stipulation on Data Availability Telegraph
Article

I Patient Access:
http://www.patient.co.uk/patient-access.asp

I The midata project: Tescos, T-mobile ...
I A social network for personal health?? e.g. EMIS

myHealth

http://www.telegraph.co.uk/health/healthnews/9673802/Patients-will-view-their-NHS-records-online-in-three-years.html
http://www.telegraph.co.uk/health/healthnews/9673802/Patients-will-view-their-NHS-records-online-in-three-years.html
https://patient.uservoice.com/knowledgebase/articles/214226-how-do-i-view-my-medical-record-
https://www.gov.uk/government/policies/providing-better-information-and-protection-for-consumers/supporting-pages/personal-data
https://myhealth.patient.co.uk/
https://myhealth.patient.co.uk/
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Missing Data

I If missing at random it can be marginalized.
I As data sets become very large (39 million in EMIS) data

becomes extremely sparse.
I Imputation becomes impractical.



Imputation

I Expectation Maximization (EM) is gold standard
imputation algorithm.

I Exact EM optimizes the log likelihood.
I Approximate EM optimizes a lower bound on log

likelihood.
I e.g. variational approximations (VIBES, Infer.net).

I Convergence is guaranteed to a local maxima in log
likelihood.



Expectation Maximization

Require: An initial guess for missing data

repeat
Update model parameters
Update guess of missing data

until convergence

(M-step)
(E-step)
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Imputation is Impractical

I In very sparse data imputation is impractical.
I EMIS: 39 million patients, thousands of tests.
I For most people, most tests are missing.
I M-step becomes confused by poor imputation.



Direct Marginalization is the Answer

I Perhaps we need joint distribution of two test outcomes,

p(y1, y2)

I Obtained through marginalizing over all missing data,

p(y1, y2) =

∫
p(y1, y2, y3, . . . , yp)dy3, . . .dyp

I Where y3, . . . , yp contains:
1. all tests not applied to this patient
2. all tests not yet invented!!



Magical Marginalization in Gaussians

Multi-variate Gaussians

I Given 10 dimensional multivariate Gaussian, y ∼ N (0,C).
I Generate a single correlated sample y =

[
y1, y2 . . . y10

]
.

I How do we find the marginal distribution of y1, y2?



Gaussian Marginalization Property
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Avoid Imputation: Marginalize Directly

I Our approach: Avoid Imputation, Marginalize Directly.
I Explored in context of Collaborative Filtering.
I Similar challenges:

I many users (patients),
I many items (tests),
I sparse data

I Implicitly marginalizes over all future tests too.

Work with Raquel Urtasun (Lawrence and Urtasun, 2009) and recent
submission with Nicoló Fusi.



Methods that Interrelate Covariates

I Need Class of models that interrelates data.
I Common assumption: high dimensional data lies on low

dimensional manifold.
I Want to retain the marginalization property of Gaussians.



Linear Dimensionality Reduction

Linear Latent Variable Model

I Represent data, Y, with a lower dimensional set of latent
variables X.

I Assume a linear relationship of the form

yi,: = Wxi,: + εi,:,

where
εi,: ∼ N

(
0, σ2I

)
.



Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

Y

W

σ2

p (Y|W) =

n∏
i=1

N

(
yi,:|0,WW> + σ2I

)



Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p (Y|W) =

n∏
i=1

N
(
yi,:|0,C

)
, C = WW> + σ2I

log p (Y|W) = −
n
2

log |C| −
1
2

tr
(
C−1Y>Y

)
+ const.

If Uq are first q principal eigenvectors of n−1Y>Y and the
corresponding eigenvalues are Λq,

W = UqLR>, L =
(
Λq − σ

2I
) 1

2

where R is an arbitrary rotation matrix.



Dealing with Non Gaussian Data

I Marginalization property of Gaussians very attractive.
I How to incorporate non-Gaussian data?

I Data which isn’t missing at random.
I Binary data.
I Ordinal categorical data.
I Poisson counts.
I Outliers.



Project Back into Gaussian

I Combine non-Gaussian likelihood with
Gaussian prior.

I Either:
I Project back to Gaussian posterior that

is nearest in KL sense.
I Expectation propagation.

I Or:
I Fit a locally valid Gaussian

approximation.
I Laplace Approximation.

Ongoing work with Ricardo Andrade Pacheco (EP) and Alan Saul
(Laplace) also James Hensman.



Gaussian Noise
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Classification Noise Model

Probit Noise Model
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Figure : The probit model (classification). The plot shows p
(
yi| fi
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for

different values of yi. For yi = 1 we have

p
(
yi| fi

)
= φ

(
fi
)

=
∫ fi
−∞
N (z|0, 1) dz.



Classification
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Ordinal Noise Model

Ordered Categories
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Figure : The ordered categorical noise model (ordinal regression).
The plot shows p

(
yi| fi

)
for different values of yi. Here we have

assumed three categories.



Ordinal Regression
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Other Challenges

I Spatial Data (workshop in November with Peter Diggle,
work with Ricardo Andrade Pacheco and John Quinn’s
group).

I Survival Data (work with Alan Saul and Aki Vehtari’s
group and HeRC).

I Image Data (work with Teo de Campos, Violet Snell and
imminent arrival of Zhenwen Dai)

I Text Data (planned collaboration with Trevor Cohn)



Example: Prediction of Malaria Incidence in Uganda

I Work with John Quinn and Martin Mubaganzi (Makerere
University, Uganda)

I See http://cit.mak.ac.ug/cs/aigroup/.



Malaria Prediction in Uganda

Data SRTM/NASA from http://dds.cr.usgs.gov/srtm/version2_1
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Malaria Prediction in Uganda
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Malaria Prediction in Uganda
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http://www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.html?_r=0


http://www.newyorker.com/online/blogs/newsdesk/2012/11/is-deep-learning-a-revolution-in-artificial-intelligence.html


http://www.seroundtable.com/google-hires-geoffrey-hinton-16499.html


http://www.wired.com/wiredenterprise/2013/03/google_hinton/


https://plus.google.com/u/0/102889418997957626067/posts/GWe4AscQdS7




Structure of Priors

MacKay: NIPS Tutorial 1997 “Have we thrown out the baby
with the bathwater?” (Published as MacKay, 1998) Also noted
by (Wilson et al., 2012)



Deep Models
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Deep Gaussian Processes

Damianou and Lawrence (2013)

I Deep architectures allow abstraction of features (Bengio, 2009;

Hinton and Osindero, 2006; Salakhutdinov and Murray, 2008).
I We use variational approach to stack GP models.
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Stacked GPs
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What Can We Do that Google Can’t?

I Google’s resources give them access to volumes of data (or
Facebook, or Microsoft, or Amazon).

I Is there anything for Universities to contribute?
I Assimilation of multiple views of the patient: each perhaps

from a different patient.
I This may be done by small companies (with support of

Universities).
I A Facebook app for your personalised health.
I These methodologies are part of that picture.
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Deep Health: Power Ranger Model of Research



GPy: A Gaussian Process Framework in Python

I BSD Licensed software base.
I Wide availability of libraries, “modern” scripting language.
I Allows us to set projects to undergraduates in Comp Sci

that use GPs.
I Available through GitHub
https://github.com/SheffieldML/GPy

I Reproducible Research with IPython Notebook.

https://github.com/SheffieldML/GPy


Probable Features for Next Release

I Non-Gaussian likelihoods.
I Multivariate outputs.
I Dimensionality reduction.
I Approximations for large data sets.
I Probabilistic-style programming (specify the model, not

the algorithm).
I A range of covariance functions, ability to implement your

own symbolically.
I Data missing at random.



Planned Features for Future Releases

I Deep models.
I Massive data: millions of points.
I Data missing not at random.
I Deep models for massive data.



GPSS: Gaussian Process Summer School

I http://ml.dcs.shef.ac.uk/gpss/

I Next one is a Winter School in Sheffield 13th-15th January
2014.

I To be followed by a workshop on Temporospatial
Modelling (16th January).

I Ran a ‘Gaussian Process Roadshow’ at Makerere in
Uganda this August.

I Will run a Roadshow in Colombia in February.
I Tentative plans for a Roadshow in Kenya in 2015.

http://ml.dcs.shef.ac.uk/gpss/


Summary

I Gaussian models good for missing data.
I Disparate data types handled with EP and Laplace.
I Deep models allow complex abstract representation of

data sets at higher levels.
I Current limitation is on data set size.
I Addressing this through work by James Hensman on

Stochastic Variational Inference for GPs (recent UAI paper).
I Intention is to deploy these models for assimilating a wide

range of data types in personalized health (text, survival
times, images, genotype, phenotype).

I Requires population scale models with millions of features.
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