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Data driven paradigm

q Traditionally, the main focus in machine learning has been model
generation through a data driven paradigm.

q Combine a data set with a flexible class of models and, through
regularization, make predictions on unseen data.

q Problems
– Data is scarce relative to the complexity of the system.
– Model is forced to extrapolate.



Mechanistic models

q Models inspired by the underlying knowledge of a physical system are
common in many areas.

q Description of a well characterized physical process that underpins the
system, typically represented with a set of differential equations.

q Identifying and specifying all the interactions might not be feasible.

q A mechanistic model can enable accurate prediction in regions where
there may be no available training data



Hybrid systems

q We suggest a hybrid approach involving a mechanistic model of the
system augmented through machine learning techniques.

q Dynamical systems (e.g. incorporating first order and second order
differential equations).

q Partial differential equations for systems with multiple inputs.
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Latent variable model: definition

q Our approach can be seen as a type of latent variable model.

Y = UW> + E,

where Y ∈ RN×D, U ∈ RN×Q , W ∈ RD×Q (Q < D) and E is a matrix
variate white Gaussian noise with columns e:,d ∼ N (0,Σ).

q In PCA and FA the common approach to deal with the unknowns is to
integrate out U under a Gaussian prior and optimize with respect to W.



Latent variable model: alternative view

q Data with temporal nature and Gaussian (Markov) prior for rows of U
leads to the Kalman filter/smoother.

q Consider a joint distribution for p (U|t), t = [t1 . . . tN ]>, with the form of a
Gaussian process (GP),

p (U|t) =
Q∏

q=1

N
(
u:,q |0,Ku:,q ,u:,q

)
.

The latent variables are random functions, {uq(t)}Q
q=1 with associated

covariance Ku:,q ,u:,q .

q The GP for Y can be readily implemented.



Latent force model: mechanistic interpretation (1)

q We include a further dynamical system with a mechanistic inspiration.

q Reinterpret equation Y = UW> + E, as a force balance equation

YB = US> + Ẽ,

where S ∈ RD×Q is a matrix of sensitivities, B ∈ RD×D is diagonal
matrix of spring constants, W> = S>B−1 and ẽ:,d ∼ N

(
0,B>ΣB

)
.



Latent force model: mechanistic interpretation (2)
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Latent force model: extension (1)

q The model can be extended including dampers and masses.

q We can write
ŸM + ẎC + YB = US> + Ê ,

where
Ẏ is the first derivative of Y w.r.t. time
Ÿ is the second derivative of Y w.r.t. time
C is a diagonal matrix of damping coefficients
M is a diagonal matrix of masses
Ê is a matrix variate white Gaussian noise.



Latent force model: extension (2)
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Latent force model: properties

q This model allows to include behaviors like inertia and resonance.

q We refer to these systems as latent force models (LFMs).

q One way of thinking of our model is to consider puppetry.
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General Dynamical LFM

q Dynamical latent force model of order M

M∑
m=0

Dm[Y]Am = US> + Ê,

where Dm[Y] has elements Dmyd (t) = dmyd (t)
dtm , and Am is a diagonal

matrix with elements Am,d that weight the contribution of Dmyd (t).

q Each element in the expression above can be written as

DM
0 yd =

M∑
m=0

Am,dDmyd (t) =
Q∑

q=1

Sd,quq(t) + êd (t),

where we have introduced an operator DM
0 that is equivalent to applying

the weighted sum of operators Dm.



Green’s functions

q The operator DM
0 is related to a so called Green’s function Gd (t , s) by

DM
0 [Gd (t , s)] = δ(t − s),

with s fixed.

q The solution for yd (t) can be written in terms of the Green’s function like

yd (t) =
Q∑

q=1

Sd,q fd (t ,uq(t)) + wd (t),

with

fd (t ,uq(t)) =

∫
T

Gd (t , τ)uq(τ)dτ,

and wd (t) is a general stochastic process.



Covariance for the outputs

q We assume that the latent functions {uq(t)}Q
q=1 are independent.

q We also assume that each uq(t) follows a Gaussian process prior, this
is, uq(t) ∼ GP(0, kuq ,uq (t , t ′)).

q Furthermore, the processes {wd}D
d=1 are also assumed independent.

q The covariance cov[yd (t), yd ′(t ′)] is the given as

cov[fd (t), fd ′(t ′)] + cov[wd (t),wd ′(t ′)]δd,d ′ ,

with cov[fd (t), fd ′(t ′)] equals to

Q∑
q=1

Sd,qSd ′,q

∫
T

∫
T ′

Gd (t − τ)Gd ′(t ′ − τ ′)kuq ,uq (τ, τ
′)dτ ′dτ.



Multidimensional inputs

q In dynamical latent force models the input variable is one-dimensional
(time).

q For higher-dimensional inputs, x ∈ Rp, partial differential equations are
used.

q Once the Green’s function associated to the linear partial differential
operator has been established, we employ similar equations to the
ones shown before to compute covariances.

q The input t is replaced by a high-dimensional vector x.
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Hyperparameter Learning

q Let X = {xn}N
n=1 represents a set of inputs, and θ represents the

hyperparameters of the covariance function.

q The marginal likelihood for the outputs can be written as

p(y|X,θ) = N (y|0,Kf,f + Σ),

where y = vec Y, Kf,f ∈ RND×ND with each element given by
cov[fd (xn), fd ′(xn′)] (Neil’s talk on Tuesday and today).

q The matrix Σ represents the covariance associated with the
independent processes wd (x).

q Hyperparameters are estimated by maximizing the logarithm of the
marginal likelihood.



Predictive distribution

q Prediction for a set of test inputs X∗ is done using standard Gaussian
process regression techniques.

q The predictive distribution is given by

p(y∗|y,X,θ) = N (y∗|µ∗,Ky∗,y∗),

with

µ∗ = Kf∗,f (Kf,f + Σ)−1 y,

Ky∗,y∗ = Kf∗,f∗ − Kf∗,f (Kf,f + Σ)−1 K>f∗,f + Σ∗.



Efficient approximations (I)

q Learning θ through marginal likelihood maximization involves the
inversion of the matrix Kf,f + Σ.

q The inversion of this matrix scales as O(D3N3).

q Single output case (D = 1) (James’ talk on Tuesday).

q Recently, Álvarez and Lawrence (2009) introduced an efficient
approximation for the case D > 1.



Efficient approximations (II)

q If only a few number K < N of values of u(x) are known, then the set of
outputs fd (x,u(x)) are uniquely determined.

q Similar to Partially Independent Training Conditional (PITC)
approximation.



Efficient approximations (III)

Sample from p(u) fd (x) =

∫
X

Gd (x− z)u(z)dz



Efficient approximations (III)

Sample from p(u) fd (x) =

∫
X

Gd (x− z)u(z)dz

Sample from
p(u|u)

fd (x) ≈
∫
X

Gd (x− z) E [u(z)|u] dz



Efficient approximations (IV)

q Another approximation (Álvarez et al., 2010) establishes a lower bound
on the marginal likelihood and reduces computational complexity to
O(DNK 2).

q Maximizing the lower bound with respect to φ(u)

L(Z,θ) = logN
(
y|0,Kf,uK−1

u,uKu,f + Σ
)

− 1
2

trace
[
Σ−1 (Kf,f − Kf,uK−1

u,uKu,f
)]
.

q Deterministic Training Conditional Variational (DTCVAR) approximation
for multiple-output GP regression.
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Second Order Dynamical System

Using the system of second order differential equations

Md
d2yd (t)

dt2 + Cd
dyd (t)

dt
+ Bdyd (t) =

Q∑
q=1

Sd,quq(t) + êd (t),

where
uq(t) latent forces
yd (t) displacements over time

Cd damper constant for the d-th output
Bd spring constant for the d-th output
Md mass constant for the d-th output

Sd,q sensitivity of the d-th output to the q-th input.



Second Order Dynamical System: solution

Solving for yd (t), we obtain

yd (t) =
Q∑

q=1

Sd,q fd (t ,uq(t)) + wd (t),

where the linear operator is given by a convolution:

fd (t ,uq(t)) =

∫ t

0

1
ωd

exp(−αd (t − τ)) sin(ωd (t − τ))︸ ︷︷ ︸
Gd (t−τ)

uq(τ)dτ,

with ωd =
√

4Bd − C2
d/2 and αd = Cd/2.



Second Order Dynamical System: covariance matrix

Behaviour of the system summarized by the damping ratio:

ζd =
1
2

Cd/
√

Bd

ζd > 1 overdamped system
ζd = 1 critically damped system
ζd < 1 underdamped system
ζd = 0 undamped system (no friction)

Example covariance matrix:

ζ1 = 0.125 underdamped
ζ2 = 2 overdamped
ζ3 = 1 critically damped

f(t) y
1
(t) y

2
(t) y

3
(t)

f(
t)

y 1(t
)

y 2(t
)

y 3(t
)

−0.4

−0.2

0

0.2

0.4

0.6

0.8



Second Order Dynamical System: samples from GP
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y1 (t)(underdamped) and green: y2 (t) (overdamped) and blue: y3 (t)
(critically damped).
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Second Order Dynamical System: samples from GP
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Motion Capture Data (1)

q CMU motion capture data, motions 18, 19 and 20 from subject 49.

q Motions 18 and 19 for training and 20 for testing.



Motion Capture Data (2)

q The data down-sampled by 32 (from 120 frames per second to 3.75).

q We focused on the subject’s left arm.

q For testing, we condition only on the observations of the shoulder’s
orientation (motion 20) to make predictions for the rest of the arm’s
angles.



Motion Capture Results

Root mean squared (RMS) angle error for prediction of the left arm’s
configuration in the motion capture data. Prediction with the latent force
model outperforms the prediction with regression for all apart from the
radius’s angle.

Latent Force Regression
Angle Error Error
Radius 4.11 4.02
Wrist 6.55 6.65

Hand X rotation 1.82 3.21
Hand Z rotation 2.76 6.14

Thumb X rotation 1.77 3.10
Thumb Z rotation 2.73 6.09
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Diffussion in the Swiss Jura
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Diffusion equation
q A simplified version of the diffusion equation is

∂fd (x, t)
∂t

=

p∑
j=1

κd
∂2fd (x, t)
∂x2

j
,

where fd (x, t) are the concentrations of each pollutant.

q The solution to the system is then given by

fd (x, t) =
Q∑

q=1

Sd,q

∫
Rp

Gd (x,x′, t)uq(x′)dx′,

where uq(x) represents the concentration of pollutants at time zero and
Gd (x,x′, t) is the Green’s function given as

Gd (x,x′, t) =
1

2pπp/2T p/2
d

exp

− p∑
j=1

(xj − x ′j )
2

4Td

 ,
with Td = κd t .



Prediction of Metal Concentrations

q Prediction of a primary variable by conditioning on the values of some
secondary variables.

Primary variable Secondary Variables
Cd Ni, Zn
Cu Pb, Ni, Zn
Pb Cu, Ni, Zn
Co Ni, Zn

q Comparison bewteen diffusion kernel, independent GPs and “ordinary
co-kriging”.

Metals IGPs GPDK OCK
Cd 0.5823±0.0133 0.4505±0.0126 0.5
Cu 15.9357±0.0907 7.1677±0.2266 7.8
Pb 22.9141±0.6076 10.1097±0.2842 10.7
Co 2.0735±0.1070 1.7546±0.0895 1.5
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A dynamic model for financial data (I)

Multivariate financial data set: the dollar prices of the 3 precious metals and
top 10 currencies.
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A dynamic model for financial data (I)

q Our model: a set of coupled differential equations, driven by either a
Gaussian process, a white noise process or both,

dfd (t)
dt

= λd fd (t) + Sdu(t),

where λd is a decay coefficient and Sd quantifies the influence of the
process u(t).

q If u(t) is a white noise process→ Langevin equation→ a linear
stochastic differential equation.

q Solution for fd (t) has the form of convolutions. For a single output and
white noise process, fd (t)→ Ornstein-Uhlenbeck (OU) process.



A dynamic model for financial data (III)
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Non-linear and Cascaded LFMs

q Non-linear LFMs
– If the likelihood function is not Gaussian or the differential equation is

nonlinear, approximations are needed.

– Approximations used before include the Laplace’s approximation
(Lawrence et al., 2007) or sampling (Titsias et al., 2009).

q Cascaded Latent Force Models
– Latent forces uq(t) could be the outputs of another latent force model.

– For example, in Honkela et al. (2010), the authors use a cascaded system
to describe gene expression data
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Recap

q Latent force models encode the interaction between multiple related
dynamical systems in the form of a covariance function.

q Each variable to be modeled is represented as the output of a
differential equation.

q Differential equations are driven by a weighted sum of latent functions
with uncertainty given by a Gaussian process priors.



Discontinuous latent forces

q If a single Gaussian process prior is used to represent each latent
function then the models we consider are limited to smooth driving
functions.

q However, discontinuities and segmented latent forces are omnipresent
in real-world data.

q Impact forces due to contacts in a mechanical dynamical system or a
switch in an electrical circuit.

q Motor primitives: most non-rhythmic natural motor skills consist of a
sequence of segmented, discrete movements.
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Continuous in the outputs

y1(t− t0)

y2(t− t1)

y3(t− t2)

y1(t0)

y1(t1 − t0)

y2(t1)

y2(t2 − t1)

y3(t2)

z(t)

t0 t1 t2

zd (t) = c i
d (t − ti−1)y i

d (ti−1) + ei
d (t − ti−1)ẏ i

d (ti−1) + Sd,i f i
d (t − ti−1,ui−1),

where

f i
d (t ,ui−1) =

∫ t

0

1
ωd

e−αd (t−τ) sin[(t − τ)ωd ]ui−1(τ)dτ.



Covariance and Samples
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Toy examples
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Segmentation of human movement (I)

q The task is to segment discrete movements related to motor primitives.

q Data collection was performed using a Barrett WAM robot as haptic
input device, with 7 DOF.



Segmentation of human movement (II)
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