
Gaussian Processes
for Sequential Prediction

Michael A. Osborne
Machine Learning Research Group
Department of Engineering Science

University of Oxford

Gaussian processes are useful for sequential data,
such as time-series and tracking applications. In
particular, Gaussian processes can be used for active
data selection (choosing the most informative data)
in such systems.

We often want to address functions of time, using
Gaussian processes for tracking.

We often want to address functions of time, using
Gaussian processes for tracking.

We often want to address functions of time, using
Gaussian processes for tracking.

We often want to address functions of time, using
Gaussian processes for tracking.

We often want to address functions of time, using
Gaussian processes for tracking.

We often want to address functions of time, using
Gaussian processes for tracking.

Time-series demand computational efficiency: data
arrives rapidly, and must be responded to promptly.

Inversion is slow, O(n3) in matrix size n.
Inversion is also unstable; conditioning
errors are significant.

1

333231

232221

131211
!

"
"
"

#

$

%
%
%

&

'

KKK
KKK
KKK

Gaussian process inference requires evaluating

but you should never actually invert a matrix.

!!
!
!
!

"

#

$$
$
$
$

%

&

==

=

nn

n

n

R

RR
RRR

KR

RRK

!
"#""

!
!

00

0
)chol(222

11211

T

The Cholesky factorisation of a positive semi-
definite matrix K is relatively fast (1/3 O(n3) in
matrix size n) and more numerically stable.

!!
!
!
!

"

#

$$
$
$
$

%

&

!!
!
!
!

"

#

$$
$
$
$

%

&

=

!!
!
!
!

"

#

$$
$
$
$

%

&

=

=

=

nnn

n

n

n x

x
x

R

RR
RRR

v

v
v

Rxx
xRv

Kxv

'

'
'

00

0

'
'

2

1

222

11211

2

1

T

!
"

!#!!
"
"

!

The upper triangular Cholesky factor can then be
stored and used to solve v = K x for x very quickly
(O(n2) in matrix size n) by back substitution.

!
!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$
$

%

&

=

1

1234

2123

3212

4321

kk

kkkk
kkkk
kkkk

kkkkk

K

n

n

!"

#

If K is Toeplitz, there exists a very efficient method
to solve v = K x for x (O(4n2) in matrix size n).

A symmetric matrix K is Toeplitz if it can be written
as

!
!
!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$
$
$

%

&

1007.605.1311.103.000
7.601007.605.1311.103.00
5.137.601007.605.1311.103.0
11.15.137.601007.605.1311.1
03.011.15.137.601007.605.13
003.011.15.137.601007.60
0003.011.15.137.60100

=K

A Gaussian process has a Toeplitz covariance matrix
if we have linearly spaced observations and a
stationary covariance function: this is common for
time-series.

!
!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$
$

%

&

=

nnK

KK
KKK

KKK
KK

K

0

00
0

0
000

4443

343332

232221

1211

!"

#

If a very large covariance matrix doesn’t have
Toeplitz structure, we may wish to attempt
sparsification, which also simplifies solving.

There are many ways to sparsify our data; the
simplest involve selecting a subset. Windowing
represents a reasonable way to do this for sequential
data.

If we already have the Cholesky factor
),chol(1111 KR =

we can efficiently determine the updated factor

,chol
0 2212

1211

22

1211

!
!
"

#
$
$
%

&
!!
"

#
$$
%

&
=!!
"

#
$$
%

&

KK
KK

R
RR

in O(n2). Similar is true for other types of Cholesky
updates and downdates, and for solutions based upon
them. A Toeplitz update is probably also possible.

!!
!
!
!
!
!

"

#

$$
$
$
$
$
$

%

&

'

''

''

'

=

=

'

!"

#

2100
1210
0121
0012

)ugly(

1K

K
function, one that
gives a sparse
precision matrix.
This allows efficient
O(n) computation.

The Kalman filter is a Gaussian process with a special
covariance

The Kalman filter is a Gaussian process with a special
covariance function, one that gives a sparse precision
matrix. This allows efficient computation.

The Kalman filter’s covariance is non-stationary: it
grows with time!

� / ��

Consider tracking a �D state x = (x, y).
Example: a feature in an image, or a vehicle position on an
approximately planar road or air temperature/air pressure.
Suppose at time tk the feature or vehicle position has prior

p(xk | z�:k−�) = N (xk;µk|k−�, Σk|k−�)

k | k− � means at timestep k but using only measurements
made up to timestep k− �. That is, before making a
measurement at timestep k. k | k is at timestep k including all
measurements up to and including timestep k.
Now make a measurement zk of xk at time k, with

p(zk | xk) = N (zk; xk,Rk)

We are after the posterior density p(xk | zk). Summing
precision, we know that the covariance must be updated to

Σ−�
k|k = Σ−�

k|k−� + R−�
k

and that the new precision-weighted mean is

µk|k = Σk|k(Σ
−�
k|k−�µk|k−� + R−�

k zk)

� / ��

♣ Example: using priors for tracking.
Prior:

µk|k−� =

�
−�
−�

�
Σk|k−� =

�
� �
� �

�

Likelihood:

zk =
�

�
�

�
Rk =

�
� �
� �

�

Posterior:

µk|k =

�
�.��
�.��

�

Σk|k =

�
�.�� �.��
�.�� �.��

�

� / ��

The prior is the posterior from the previous time
step, updated to take account of the dynamics.

Example: assume that the velocity at timestep k, uk is
constant, except for noise (i.e. the acceleration is pure noise)

xk = xk−� + uk−� ∆t

p(uk−�) = N
�
uk−�; v,Qk = σ�

�
� �
� �

��

where ∆t = (tk − tk−�) : we’ll take ∆t = � for simplicity
hencforth. Note that xk is the sum of two
Gaussian-distributed variables, xk−� and uk. Hence, xk is
another Gaussian with mean and variance

µk|k−� = µk−�|k−� + v
Σk|k−� = Σk−�|k−� +Qk.

� / ��

The Kalman Filter is representable using a
Markov chain.

Xi : Unknown state at time-step ti.
Zi : Known measurement at time-step ti.

Observations depend only on the corresponding state.
The states only depend on their neighbours. Given Xi−� and
Xi+�, Xi is independent of all other states: the precision matrix
over all observations would be sparse.

� / ��

The Kalman Filter is representable using a
Markov chain.

Using the product rule,

p(X�,X�,X�,X�)

= p(X�) p(X� | X�) p(X� | X�,X�) p(X� | X�,X�,X�)

and using the Markov chain

= p(X�) p(X� | X�) p(X� | X�) p(X� | X�).

� / ��

The Kalman Filter is given by the update cycle:

Posterior after step k− �:
p(xk−� | z�:k−�) = N (xk−�;µk−�|k−�,Σk−�|k−�).

Assume p(xk | xk−�) = N (xk; xk−� + v,Qk).
�. Prediction: p(xk | z�:k−�) = N (xk;µk|k−�,Σk|k−�), for

µk|k−� = µk−�|k−� + v
Σk|k−� = Σk−�|k−� +Qk.

�. Make measurement zk, p(zk | xk) = N (zk; xk,Rk).

�. Fuse measurement with prediction
Σ−�

k|k = Σ−�
k|k−� + R−�

k

µk|k = Σk|k(Σ
−�
k|k−�µk|k−� + R−�

k zk)
Posterior after step k: p(xk | z�:k) = N (xk;µk|k,Σk|k).

� / ��

♣ Example.
Posterior t = � Dynamics step � to � Measure at t = �

x�|� =
�
−�
−�

�
v =

�
�
�

�
z� =

�
�
�

�

Σ�|� =

�
� �
� �

�
Q� =

�
�.� �
� �.�

�
R� =

�
� �
� �

�

Prediction at t = �:

Σ�|� = Σ�|� +Q� =

�
�.� �.�
�.� �.�

�
x�|� = x�|� + v =

�
−�
−�

�

Fuse measurement at t = �:

Σ�|� =
�
Σ−�

�|� + R−�
�

�−�
=

�
�.��� �.���
�.��� �.���

�

x�|� = Σ�|�

�
Σ−�

�|� x�|� + R−�
� z�

�
=

�
�.��
�.��

�

� / ��

Berkeley Tracker in action

� / ��

Graphically ...

x(k|k)

P(k|k)

x(k+1|k)

P(k+1|k)

prediction

m
e
a
s
u
re
m
e
n
t

update

z(k)

R(k)

x(k+1|k+1)

P(k+1|k+1)

�� / ��

A richer Kalman Filter:

Posterior after step k− �:
p(xk−� | z�:k−�) = N (xk−�;µk−�|k−�,Σk−�|k−�).

Assume p(xk | xk−�) = N (xk; F xk−�,Qk).
�. Prediction: p(xk | z�:k−�) = N (xk;µk|k−�,Σk|k−�), for

µk|k−� = F µk−�|k−�

Σk|k−� = F Σk−�|k−� F� +Qk.

�. Make measurement zk, p(zk | xk) = N (zk;H xk,Rk).

�. Fuse measurement with prediction
Σ−�

k|k = Σ−�
k|k−� +H�R−�

k H
µk|k = Σk|k(Σ

−�
k|k−�µk|k−� +H�R−�

k zk)
Posterior after step k: p(xk | z�:k) = N (xk;µk|k,Σk|k).

�� / ��

Let’s assume our state evolves linearly
(according to F) over a time-step.

We also regard v as a member of the state x =
�
x, y, vx, vy

��,

e.g. xk =





x
y
vx
vy





k

=





� � ∆t �
� � � ∆t
� � � �
� � � �









x
y
vx
vy





k−�

+ εk−�,

p(εk−�) = N (εk−�; ��×�,Qk)

But recall that if y = A x, then Σy = A Σx A�.

Using this explains the prediction phase:

State µk|k−� = F µk−�|k−�
Covariance Σk|k−� = F Σk−�|k−� F� +Qk

.

�� / ��

We assume measurements are linearly related to
the state.

That is, we have p(zk | xk) = N (zk;H xk,Rk). Here we will
assume that we can only measure x and y, not velocities, so

zk = H xk + ηk =

�
� � � �
� � � �

�



x
y
vx
vy





k

+ ηk

p(ηk) = N (ηk; ��×�,Rk)

The Woodbury matrix identity

(A+ U C V)−� = A− A−� U(C−� + VA−�U)−�V A−�

along with Gaussian identities gives the update phase:
State µk|k = Σk|k(Σ

−�
k|k−�µk|k−� +H�R−�

k zk)
Covariance Σk|k =

�
Σ−�

k|k−� +H�R−�
k H

�−�

�� / ��

Bayes’ Theorem gives a more satisfying
derivation of the update phase.

Bayes’ theorem says that the posterior probability of the state
x given the data z is p(x | z) = p(z | x)p(x)/p(z). The prior of
the data is a constant, and of no interest.
Assume that the prior of the state (we’re not writing the
conditioning on z�:k−� for convenience) is a multivariate
Gaussian centred on µk|k−� with covariance Σk|k−�, then

p(xk) ∝ exp
�
−�/�

�
xk − µk|k−�

��
Σ−�

k|k−�

�
xk − µk|k−�

��
.

Similarly

p(zk | xk) ∝ exp
�
−�/� (zk −H xk)� R−�

k (zk −H xk)
�
.

We’ll de�ne p(xk | zk) as having the form

p(xk | zk) ∝ exp
�
−�/�

�
xk − µk|k

��
Σ−�

k|k
�
xk − µk|k

��
.

�� / ��

Now we take the natural log of Bayes’ rule.

− ln p(xk | zk) = �/�
�
xk − µk|k

��
Σ−�

k|k
�
xk − µk|k

�
+ c�

= �/� (zk −H xk)� R−�
k (zk −H xk)

+�/�
�
xk − µk|k−�

��
Σ−�

k|k−�

�
xk − µk|k−�

�
+ c�

If you now complete the square by gathering terms in xk (that
is, x�k Axk and Bxk), you’ll �nd

− ln p(xk | zk) = �/�
�
xk − µk|k

��
Σ−�

k|k
�
xk − µk|k

�

where

µk|k = Σk|k(Σ
−�
k|k−�µk|k−� +H�R−�

k zk)

Σk|k =
�
Σ−�

k|k−� +H�R−�
k H

�−�

�� / ��

The Kalman Filter can be extended to manage
the nth-order autoregressive model.

We often want to allow the next position to be a function of
not just the last position, but the last n positions. To do so, we
just augment the state with those extra positions. If n = �, we
have the state xk = [xk, xk−�]

�,

e.g. xk =
�

xk
xk−�

�
=

�
α β
� �

� �
xk−�

xk−�

�
+ εk−�,

p(εk−�) = N (εk−�; ��×�,Qk)

The Kalman Filter can then be trivially applied with

F =

�
α β
� �

�

�� / ��

The Kalman Filter is an optimal recursive �lter
for systems where

the initial state is described by a Gaussian distribution,
the measurement noise and prediction or “plant” noise
are Gaussian, and
where both the state evolution is linear (F) and the
measurements are linearly related to the state (H).

We now brie�y mention two di�erent approaches to �ltering:
The Extended Kalman Filter, useful when the state
evolution and/or the measurement model is non-linear,
but the distributions are Gaussian.
The Particle Filter, useful when the distributions are very
non-Gaussian.

�� / ��

The Extended Kalman Filter begins with a
Gaussian “prior”.

We begin with p(xk−�) = N (xk−�;µk−�|k−�,Σk−�|k−�).

However, rather than evolving linearly as xk = F xk−� the state
may evolve non-linearly as

xk = f(xk−�).

Now assume that the non-linear vector function f(·) is close to
linear, so the propagation of uncertainty can be linearized
about the current operating point.

�� / ��

Recall the Jacobian matrix.
To avoid too many x’s and too many subscripts, suppose
y = f(x).
f is a “vector function” — that is a vector of functions. For
example, suppose y and x have length �.

y =




y�
y�
y�



 =




f�(x�, x�, x�)
f�(x�, x�, x�)
f�(x�, x�, x�)



 =




x�� + �x� + �/x�
−�/x� + cos(x�)
x� + x�/x� + x�





Then

∇f =




∂y�/∂x� ∂y�/∂x� ∂y�/∂x�
∂y�/∂x� ∂y�/∂x� ∂y�/∂x�
∂y�/∂x� ∂y�/∂x� ∂y�/∂x�



 =




�x� � −�/x��
�/x�� � − sin(x�)
� �/x� −x�/x�� + �





The numerical values in ∇f are computed at the current value
of x.

�� / ��

Suppose we have the linear relation y = A x.
Now rewrite y as a slight deviation from y� = A x�,

y = y� + δy = A x = A (x� + δx) ⇒ δy = A δx

Now, no matter what the �xed point, the covariance of y is

Σy = E[δyδy�] = E[Aδxδx�A�] = AE[δxδx�]A� = AΣxA�

.
Now suppose y = f(x). A �st order Taylor expansion gives

y = y�+δy = f(x) ≈ f(x�)+
∂f
∂x

δx ⇒ δy =
∂f
∂x

δx = ∇f δx

Σy = ∇f Σx∇f�

�� / ��

Similarly, measurements can be non-linearly
related to the state.

Rather than z = H x we assume

z = h(x)

And just as F was replaced by ∇f, H is replaced by ∇h, where

∇h =





∂z�/∂x� ∂z�/∂x� · · ·
∂z�/∂x� ∂z�/∂x� · · ·
...

... . . .





As before, numerical values of ∇h are computed at the

current value of x.

�� / ��

The Extended Kalman Filter:

Posterior after step k− �:
p(xk−� | z�:k−�) = N (xk−�;µk−�|k−�,Σk−�|k−�).

Assume p(xk | xk−�) = N (xk; f(xk−�),Qk).
�. Prediction: p(xk | z�:k−�) = N (xk;µk|k−�,Σk|k−�), for

µk|k−� = f(µk−�|k−�) NB: we can use f exactly!

Σk|k−� = ∇f Σk−�|k−� ∇f� +Qk.

�. Make measurement zk, p(zk | xk)=N (zk;h(xk),Rk).

�. Fuse measurement with prediction
Σ−�

k|k = Σ−�
k|k−� +∇h�R−�

k ∇h
µk|k = Σk|k(Σ

−�
k|k−�µk|k−� +∇h�R−�

k zk)
Posterior after step k: p(xk | z�:k) = N (xk;µk|k,Σk|k).

�� / ��

Particle �lters are for multimodal densities.
The Kalman Filter can (and usually does) fail catastrophically
if the measurement density is multimodal.
Multimodal measurement pdfs enter when we use robust
statistical methods to identify rogue data or “outliers”.
Multimodal densities also emerge when we wish to represent
multiple hypotheses (one mode per hypothesis).

Consider a
contour tracker.

�� / ��

Multiple hypotheses give multiple posterior
peaks.

�� / ��

The particle �lter is a sample-based means of
sequential integration.

Our goal is to compute the posterior using Bayes’ rule,

p(x | z) = p(z | x) p(x)�
p(z | x) p(x) dx

.

For most multimodal
distributions, the integral
in the denominator is
intractable. Similarly, the
integrals for the mean,�
z p(z | x) dz, and

covariance are often
intractable.

p(z|x) p(x)

p(x|z) = k p(z|x) p(x)

p(x|z)

�� / ��

At timestep k− �, the posterior density is
represented using a set of N weighted particles,
{(s(i)k−�, π

(i)
k−�) | i = � . . .N}.

Each particle represents a particular instance of the state
Xk−� = sk−� at time k− �, with a weight πk−� and where�

i π
(i)
k−� = �.

Particles should (i) be clustered and (ii) have high weights
where there is high density, it’d be pointless to have lots of
particles with π = �.

State X

Probability

sample
weighted

posterior
density

�� / ��

In summary,

� The Kalman Filter requires Gaussianity: linear
measurements and dynamics.

� The Extended Kalman Filter linearises non-linear
measurements and dynamics in order to e�ect analytic
�ltering.

� The Particle Filter uses samples to numerically resolve
inference for non-Gaussian systems.

An extension to the Extended Kalman Filter is to use
a Gaussian process to model the transition function.

x

Hence we do not need simultaneous observations of
all outputs.

If there are multiple time-series (outputs), reframe
the problem as having a single output, and an
additional label input specifying the output.

() ()() () ()jijijjii llKxxKlxlxK ,,,,, =

separable for convenience

If L is not too large, we could use
the spherical parameterisation.

If the inputs were previously x, and outputs were
labelled by l = 1, ..., L, we now need to specify a
covariance over both x and l, e.g.

!!
!
!
!

"

#

$$
$
$
$

%

&

!!
!
!
!

"

#

$$
$
$
$

%

&

=

=

!"

#

!"

#

3

2

1

32

321

21

T

00
00
00

)sin()sin(00
)cos()sin()sin(0

)cos()cos(1

h
h

h

R

RRK

''

'''

''

We can represent any covariance K using the
spherical parameterisation.

e.g.

Some special large matrices can be represented in a
compact way using the Kronecker product.

A Gaussian process will have a Kronecker product
for a covariance matrix if we use a product
covariance function and a grid of samples.

For example, taking the covariance that is separable
over t and l, along with simultaneous observations
for all sensors, gives a Kronecker product.

() ()
() ()bbaa

baba

vKvK

vvKKx
11

1

!!

!

"=

""=

size na ! nb

size na size nb

Recall that solving operations
are typically O(n3)!

If K is a Kronecker product, there exists a very
efficient method to solve v = K x for x (particularly
when v is itself a Kronecker product):

Associated with our covariance function (and also
our mean function) are a number of
hyperparameters !, such as

periods

correlations

 amplitudes

Integrating over (marginalising) these unknown
hyperparameters is usually non-analytic, and requires
quadrature.

parameter
(period of a periodic function)

lo
g-

lik
eli

ho
od

Re-cap from yesterday: Bayesian quadrature gives an
excellent method for estimating the integrand – a
Gaussian process.

parameter
(period of a periodic function)

lo
g-

lik
eli

ho
od

As an example, consider a fixed sample set of
hyperparameters !s,
e.g. ! = the period of x(t).

We propagate through time one Gaussian process
for each of our sample set !s, adjusting the weights
according to the data as we go.

Using doubly-Bayesian quadrature, we can select
samples of a period in order to perform inference for
a periodic function of unknown period.

With Bayesian quadrature, we can also estimate the
posterior distributions for any hyperparameters.

We now extend our Gaussian process framework to
changepoints and faults.

We introduce covariances for drastic changepoints.

We introduce covariances for changepoints in input
scale.

We introduce covariances for changepoints in
output scale.

Changepoint covariances feature hyperparameters,
for which we can produce posterior distributions
using quadrature.

Changepoint detection requires the posterior for the
changepoint location hyperparameter.

input scale pre-changepoint

input scale post-changepoint

changepoint location

We can hence perform both prediction and
changepoint detection.

As data is usually weakly correlated across a
changepoint, we usually need only consider a few
changepoints in a window.

window 2
window 1

changepoint changepoint

We can identify the OPEC embargo in October 1973
and the resignation of Nixon in August 1974.

A fault is defined as a change in our observation
model.

We can perform prediction even when we have
uninformative faulty observations.

We introduce a drift covariance to model drift faults.

We can remove saccade faults from EEG data.

Water sustainability requires fast and effective
monitoring of problematically-corrupted water data:
we need a method capable of managing
uncharacterised faults.

By averaging over the faultiness of each datum, we
can perform effective fault removal for this data.

Often we wish to take only the most informative
data; by defining the costs of observation and
uncertainty, we can perform optimal active data
selection.

We can use our predictive error bars to perform
active data selection. For example, we might take a
loss function that is infinite if the predictive variance
for any time-series (sensor) ever exceeds some
threshold.

A better alternative is to take a loss function that is
the sum of the predictive variances at each of our
time-series (sensors), along with a cost of
observation.

We’ll then take an observation only when the
resulting expected reduction in summed-variance
exceeds the cost of observation.

The observation we choose will be the one that gives
the greatest expected reduction in summed-variance.

Active data selection hence reduces the rate of
sampling during faulty, uninformative states.

Bramblemet is a network of wireless weather
sensors deployed in the Solent.

Bramblemet is used by port authorities and
recreational sailors.

Like many sensor networks,
the remoteness of its sensors
mean that active data
selection is important.

Please enjoy the demo!

Active data selection takes fewer samples when the
data is faulty.

Wannengrat hosts a remote weather sensor network
used for climate change science, for which
observations are costly.

Our algorithm selects more observations during
interesting volatile periods.

Thanks! I would also like to thank my collaborators,
Roman Garnett,
Steve Reece
Stephen Roberts
and Alex Rogers.

References
 http://www.robots.ox.ac.uk/~mosb

