Gaussian Processes
for Sequential Prediction

Michael A. Osborne

Machine Learning Research Group
Department of Engineering Science
University of Oxford

e UNIVERSITY OF




Gaussian processes are useful for sequential data,
such as time-series and tracking applications. In
particular, Gaussian processes can be used for active
data selection (choosing the most informative data)

in such systems.
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We often want to address functions of time, using
Gaussian processes for tracking.
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Time-series demand computational efficiency: data
arrives rapidly, and must be responded to promptly.




Gaussian process inference requires evaluating

p(EIf) = N (£IK. K {f, K. - K (KK

but you should never actually invert a matrix.

Inversion is slow, O(n?) in matrix size n.
Inversion is also unstable; conditioning
errors are significant.
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The Cholesky factorisation of a positive semi-
definite matrix K is relatively fast (1/3 O(n’) in
matrix size n) and more numerically stable.

K=R'R
(R, R, - R

0 R. ... R
R=chol(K)=| . 2 >

0 0 - R,




The upper triangular Cholesky factor can then be
stored and used to solve v = K x for x very quickly
(O(%°) in matrix size n) by back substitution.

v =KX

v=R'x

X'= Rx

(v, (R, R, - R \/x'\)
v, 0O R, -+ R, | X,




A symmetric matrix K is Toeplitz if it can be written
as

‘k k, kK, k
k2 kl k2 k3
K _ k3 k2 kl k2
k, k k, k
K, ki )

If Kis Toeplitz, there exists a very efficient method
to solve v = K x for x (O(4#2) in matrix size n).




A Gaussian process has a Toeplitz covariance matrix
if we have linearly spaced observations and a
stationary covariance function: this is common for
time-series.
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If a very large covariance matrix doesn't have
Toeplitz structure, we may wish to attempt
sparsification, which also simplifies solving.

(K, K, 0 0 0 )
K21 K22 K23 O

K= 0 K32 K33 K34
O O K43 K44
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There are many ways to sparsify our data; the
simplest involve selecting a subset. Windowing

represents a reasonable way to do this for sequential
data. Tide Heights, Independent Sensor 1
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If we already have the Cholesky factor
R,, =chol(K,)),

we can efficiently determine the updated factor

Rll R12 _ ChOl Kll KIZ
O R22 KIZ K22 ,

in O(n?). Similar is true for other types of Cholesky
updates and downdates, and for solutions based upon
them. A Toeplitz update is probably also possible.




The Kalman filter is a Gaussian process with a special
covariance

o . K = (ugly)
1.1nct10n, one that 2 1 0 0 .
gives a sparse - Lo
precision matrix.
: . 110 -1 2 -1
This allows efficient
O(n) computation. 00 -1 2 |
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f
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The Kalman filter is a Gaussian process with a special
covariance function, one that gives a sparse precision
matrix. This allows efficient computation.

p(fi]T)=N(f1;v,A)
P(fk ’ Jh—1, [) éN(fk;Gfk—hQ)
p(yr | frs I) = N(ys; H fr, R)




[I>

p(fl‘[) N(flayaA)
p(fr | fim1, 1) =N(fi: G fr1, Q)

p(y | fro I) = N(yw; H fr, R)

min(j,k)
Kt tr) EGAGT + Y oG+
a=1

Kpy(ty,te) = Kyty, te) H'

[I>

K,(tj ty) = HKp(tj, tp) H + 6,1 R




p(fi 1) = N(fiv,A)
p(fe | fe-1, 1) = N(fi; G fi1, Q)
Qs | fir 1) = Nys; H fi, R)
Ki(tj,t,) = G'AGT" {nmifk) G QG }

Kpy(ty,te) = Kyty, te) H'

[I>

K,(tj ty) = HKp(tj, tp) H + 6,1 R

The Kalman filter’s covariance is non-stationary: it
grows with time!
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Consider tracking a 2D state x = (x, y).

Example: a feature in an image, or a vehicle position on an
approximately planar road or air temperature/air pressure.

Suppose at time t; the feature or vehicle position has prior

P(Xk ’ ZO:kfl) = N(xk; Fijk—1s 2klk—l)

That is, before making a
measurement at timestep k. k | kis at timestep k including all
measurements up to and including timestep k.

Now make a measurement z, of x; at time k, with
p(Zk | Xk) = N(Zk; Xk Rk)

We are after the posterior density p(xy | z). Summing
precision, we know that the covariance must be updated to

Tk = B, TR
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& Example: using priors for tracking.

Prior:

—1 2 1
Bijk— = [ . } Zk\kﬂ = [ 13 } .

Likelihood: : ﬂ
1 1 (0]
w=[y] =0

o 1

Pgsterior

POSterior: distribution
. .
0.55
Kk = [ 1.37 } 5 ‘
6 -4 -2 0 2 4 6
0.64 0.0
0.09 0.73
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The prior is the posterior from the previous time

step, updated to take account of the dynamics.
Example: assume that the velocity at timestep k, uy is

constant, except for noise (i.e. the acceleration is pure noise)

Xk = Xg—1 + Uj—y At
P(Uk—l) =N (ukl; v, Qk =0’ |: (1) (1) :|>

where At = (& — t,_,) : we'll take At = 1 for simplicity
hencforth. Note that x; is the sum of two
Gaussian-distributed variables, x,_, and uy. Hence, x, is
another Gaussian with mean and variance

M-y = Hy_yj—y TV
Vs = Vil T Qe



The Kalman Filter is representable using a

Markov chain.
Xl X2 X3 Xt—l Xt
2R

A Zs Zs Zy—q Zy

X;:  Unknown state at time-step t;.
Z;: Known measurement at time-step t;.
Observations depend only on the corresponding state.

Given X,_, and

Xit1, X;is independent of all other states: the precision matrix

over all observations would be sparse.
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The Kalman Filter is representable using a
Markov chain.

X4 X5 X3 Xi_q X
7 Zs Z3 Zi1 Zy

Using the product rule,
p(X., X,, X5, X,)
= p(X) p(Xz [ X) p(Xs | X2, X0) p(X, | X3, X2, X0)

and using the Markov chain

= p(X,) p(X; | X,) p(X;5 [ X.) p(X, | X5).

5/26



6/ 26

The Kalman Filter is given by the update cycle:

Posterior after step k — 1:
P(Xi—1 | Zoik—1) = N(xkﬂ; Hi—ik—1> 2k—l\k—l)-
Assume p(x | x,—,) = N (xg; X,y + v, Q).
1. Prediction: p(xg | Zo:u—r) = N (xx; s Xk, for
M- = HMpqjk— TV
Y = Vil T Qe

2. zi, p(zi | i) = N(zs; x4, RY)-
E;“l(

P = Sk g + R 'zi)
Posterior after step k: p(xx | Zo:k) = N (x4 Figs Sik)-

T R




& Example.
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Posterior t = o Dynamics step o to 1 Measure at t =1

ko= | 1) v=[¢] .

2 1 0.3 O 1
zzobz{l 3} Q:{O 0_3} Rlz[o

Prediction at t = 1:

E1\0 = 20|o + Ql = |:

2.3 1.0
1.0 3.3

Fuse measurement at t = 1:

Elll = <EIT$ _|_ R1—1>71 = |:

1 xl\o:xo\o—i_": |:

0.674 0.076
0.076 0.750

Xi = 21|1 (E_; Xilo + Rl_l Zl> = |:

1

3-95
1.78
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Berkeley Tracker in action
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Graphically .
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A richer Kalman Filter:

Posterior after step k — 1:
P(Xkr | Zok—1) = N (Xks; Hop—s| k=15 i afk)-
Assume p(x | x,—,) = N (xx; Fx;_,, Q).
1. Prediction: p(xg | Zo:u—r) = N (xx; s Xk, for
Pi—r = Fly i
Siker = FE i F + Qg

2. Zi P(zi | xi) = N(zi; Hxy, Ry).

—1 -1 T p—1
E/<|/< = Ek\k—l +H R H
P = S B + H'R'z)
Posterior after step k: p(x | Zou) = N (Xk; Py, Zkiie)-
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Let’s assume our state evolves linearly
(according to F) over a time-step.

-
We also regard v as a member of the state x = [x7 VY, Vi, vy] ,

X 1 o At o X
y o 1 o At y
e.g. Xy = = + Ek—1,
Vi oo 1 o Vy
vy |, o o o 1 vy |,

p(ei) = N (€1 04x1s Qi)
But recall that ify = Ax, then £, = A%, AT,

Using this explains the prediction phase:

State IJ’k|k—1 = Fl"l’k—1|k—1
Covariance Xy, = FX, 4, FT + Q, °
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We assume measurements are linearly related to

the state.
That is, we have p(z | xx) = N (zx; H xk, Ry). Here we will
assume that we can only measure x and y, not velocities, so

X
1 0 0 O y
Zk:meLm:[O 1 0 0} v | T
Vy P

p(1) = N (145 04, Ri)
The Woodbury matrix identity
(A+UCV)'=A—AUC '+ VAU 'VA™!
along with Gaussian identities gives the
State l’l’k|k = 2k|k(zl?|;(71u'k|k—l T HT REIZ/()
Covariance Xy = (2;&(_1 + HTR;1H) -
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Bayes’ Theorem gives a more satisfying

derivation of the

Bayes’ theorem says that the posterior probability of the state
x given the data z is p(x | z) = p(z | x)p(x)/p(z). The prior of
the data is a constant, and of no interest.

Assume that the prior of the state (we’re not writing the
conditioning on z,.,_, for convenience) is a multivariate
Gaussian centred on ), with covariance Xy, then

T —1
plxe) o exp (=12 (e = ) Sic, (i — b)) -
Similarly
plzi | xi) o< exp (12 (24 = Hx)T R (2~ Hxi) )
We'll define p(x, | z) as having the form

p(xi | zi) o< exp (— /o (i — prige) | Bigh (xic— uk|k)) :



Now we take the natural log of Bayes’ rule.

T —1
—Inp(xi|z) = /- (xk — p,k|k) Ek“( (xk — [.Lk|k) + ¢
= a(zik— Hxp)' Ry (z — Hx))
T —1
+1/2 (Xk - Nk|k—1) Ek“H (Xk - Hk|k—1) +G
If you now complete the square by gathering terms in x, (that
is, xZAxk and Bxy), you’ll find
T 51—
—Inp(x | i) = /2 (xe — Hk|k) Xk (% — Hk|k)
where
oy = Eklk(zm—luk\kﬂ + HTR/:IZk)
Sk = (S, + H'RH) ™
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The Kalman Filter can be extended to manage
the nth-order autoregressive model.

We often want to allow the next position to be a function of
not just the last position, but the last n positions. To do so, we
just augment the state with those extra positions. If n = 2, we
have the state x;, = [x, xk_l]T,

_ Xk _ | @ B Xi—1
€.8. Xy = |:Xk1 :| = [ 1 O:| |:Xk2 :| +€k—17

P(Ek—l) = N(Ekfl; 0,x1, Qk)
The Kalman Filter can then be trivially applied with

-[52]
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The Kalman Filter is an optimal recursive filter
for systems where

m the initial state is described by a Gaussian distribution,

m the measurement noise and prediction or “plant” noise
are Gaussian, and

m where both the state evolution is linear (F) and the
measurements are linearly related to the state (H).

We now briefly mention two different approaches to filtering:

m The useful when the state
evolution and/or the measurement model is non-linear,
but the distributions are Gaussian.

m The Particle Filter, useful when the distributions are very
non-Gaussian.
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The begins with a
Gaussian “prior”.

We begin with p(xi—1) = N (Xe—1; By hrs Zklk—1)-

However, rather than evolving linearly as x, = Fx,_, the state
may evolve non-linearly as

Xk = f(Xk,I).

Now assume that the non-linear vector function f(-) is close to
linear, so the propagation of uncertainty can be linearized
about the current operating point.
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Recall the Jacobian matrix.

To avoid too many x’s and too many subscripts, suppose
y = f(x).

f is a “vector function” — that is a vector of functions. For
example, suppose y and x have length 3.

N ﬁ(X17X27X3) X12+3X2+1/X3
y=1|v.|=| filx,x,x) | =] —1/x + cos(x;)
Y3 f3(le X2 X3) X + XZ/X3 + X
Then
IMfox, Mfox, nfax 2X, 3 —1/x
V= | /ox, 9fox, 9fox, | = |1/ o —sin(x,)
Wfox. Osfox. O¥sfox, 11/x —x/% +1

The numerical values in Vf are computed at the current value
of x.
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Suppose we have the linear relation y = A x.
Now rewrite y as a slight deviation fromy_ = A x,,

y=y,+t0y=Ax=A(x,+90x) = dy=Adx
Now, no matter what the fixed point, the covariance of y is

¥, =E[dydy'] = E[Adxdx ' A'] = AE[6xdx ' |A| = AZ,A"

Now suppose y = f(x). A 1st order Taylor expansion gives

of of
y =y, +0y =f(x) = f(xo)+&5x = 0y = &(5x = Vfdx

¥, = VfX,Vf'




Similarly,

Rather than z = H x we assume

z=h(x)

And just as Fwas replaced by Vf, H is replaced by Vh, where

821/8x1 821/6)(2
Vh = | 92/ox 92/ox,

As before, numerical values of Vh are computed at the

current value of x.

20/ 26
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The Extended Kalman Filter:

Posterior after step k — 1:
P(Xk—l | ZOZk*l) - N(kal; uk—1|k—1> Ek—1|k—1)-

Assume p(x; | x;—,) = N (xg; f(x,), Q).
1. Prediction: p(xk | Zok—) = N (Xk; Hjiers Zige—n), for
Py = F(py i) NB:we can use fexactly!

Yk = VI VT + Q.
2. Make measurement zy, p(zx | x¢) =N (zi; h(x,), Ry).

3.
Suk = D+ VhTRVh

Bk = 2 Bage—s + Vh' R,z
Posterior after step k: p(x | Zo:k) = N (x4 Foygis Zik)-
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Particle filters are for multimodal densities.

The Kalman Filter can (and usually does) fail catastrophically
if the measurement density is multimodal.

Multimodal measurement pdfs enter when we use robust
statistical methods to identify rogue data or “outliers”.
Multimodal densities also emerge when we wish to represent
multiple hypotheses (one mode per hypothesis).

Consider a
contour tracker.



Multiple hypotheses give multiple posterior
peaks.

Time
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The particle filter is a sample-based means of
sequential integration.

Our goal is to compute the posterior using Bayes’ rule,

<) = P]x)p(x)
P) = ot ) plx

(x) dx
For most multimodal p(zlx) p(x)
distributions, the integral
in the denominator is /

intractable. Similarly, the
integrals for the mean, p(xlz) = k p(zlx) p(x)
[z p(z| x) dz, and
covariance are often
intractable.

p(xlz)
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At timestep k — 1, the posterior density is
represented using a set of N weighted particles,
(0 )y
{(Sk—17 7Tk—1) ’ I=1... N}
Each particle represents a particular instance of the state
Xk—: = Sk, at time k — 1, with a weight m_, and where
Ziﬂ-l((Ill =1
Particles should (i) be clustered and (ii) have high weights

where there is high density, it’d be pointless to have lots of
particles with m = o.

Probability — Bgsterier

O yeighted

-

QP @O0 0o o stateX
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In summary,

1 The Kalman Filter requires Gaussianity: linear
measurements and dynamics.

2 The Extended Kalman Filter linearises non-linear
measurements and dynamics in order to effect analytic
filtering.

3 The Particle Filter uses samples to numerically resolve
inference for non-Gaussian systems.



An extension to the Extended Kalman Filter is to use
a Gaussian process to model the transition function.
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If there are multiple time-series (outputs), reframe
the problem as having a single output, and an
additional label input specifying the output.

20. hwlr

10

label N
T 0 t (days)

Hence we do not need simultaneous observations of
all outputs.
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[f the inputs were previously x, and outputs were
labelled by [ =1, ..., L, we now need to specify a
covariance over both x and [, e.g.

separable for convenience
A

K((xl,ll)(x],l])) I(((xl.,x) (ll,lj)

|

If Lis not too large, we could use
the spherical parameterisation.
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We can represent any covariance K using the
spherical parameterisation.

K=R'R
(1 cos(6) cos(6,) < NB 00 )
P 0 smn(6) sm(6,)cos(b,) 0 A, O
10 0 sin(6,)sin(6,) 0 0 A
5 s "




Some special large matrices can be represented in a
compact way using the Kronecker product.

aq1 B ol A1n B

A1 B e a*mnB

aj1byy  aybyp - allblq cee e Appbyy @rpbipy - a-lnblq

ajrbyy  ayibyy - 0411b2q ceeeee Aipbyy  Agpbyy - a’lanq

a‘llbpl a‘llbp2 e a‘llbpq ooty a’lnbpl a’lnbp2 e a’lnbpq
AxB =

Am1 bll Am1 b12 Tt Oy blq R ¢ 5770 ) bll Amn bl? "t Omn blq
Am1 b21 Am1 b22 SR PP | b2q et ottt O b21 Amn b22 "t Omn b2q

_avnl bpl Am1 bp2 Tt Oy bpq et ottt Omp bpl Amn bp? "t Omn bpq_

(1-0 1-5 2-0 2-5 [0 5 0 10]

1 9] fo5 |16 172627 |6 7 12 14

e.g. 3 4/%l6 71 = 13.0 3.5 4.0 4.5 “lo 15 o 20!
3.6 3.7 4.6 4-7] |18 21 24 28




A Gaussian process will have a Kronecker product
for a covariance matrix if we use a product
covariance function and a grid of samples.

K((0,0), (z1,22))

10 10

Lo

-10
-10 -5 0 ) 10 -10

] 5]

For example, taking the covariance that is separable
over tand [, along with simultaneous observations
for all sensors, gives a Kronecker product. gy

S e\
% ‘7' o

> OXFORD



[f Kis a Kronecker product, there exists a very
efficient method to solve v = K x for x (particularly
when v is itself a Kronecker product):

size n,x N,

\
[ |

sizen,  sizen,

Recall that solving operations
are typically O(n°)!

e UNIVERSITY OF




Associated with our covariance function (and also
our mean function) are a number of
hyperparameters @, such as

30~
periods
“ |—(
+1SD
10+ — Mean
+ Observations .
| | correlations
2,
-10 , ‘ ‘ , ‘ 1.5
0 20 40 60 80 100 Sensor 1
t 1 +1SD
05 —Mean
3 + Observations
amplitudes < o
Sensor 2
0-5 +1SD
-1 —Mean
O Observations
-1.5
-2

0 20 40 60 80 100
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Integrating over (marginalising) these unknown
hyperparameters is usually non-analytic, and requires
quadrature.

log-likelihood

~1 —0.5 0 0.5 1 1.5 2
parameter
(period of a periodic function)




Re-cap from yesterday: Bayesian quadrature gives an
excellent method for estimating the integrand — a
(Gaussian process.

200 -

o |
400 / :
i
7
\ 7

-600 -

log-likelihood

parameter
(period of a periodic function)




As an example, consider a fixed sample set of
hyperparameters s,

e.g. @ = the period of x(1). ) 0= 2075

1 *:l )\ Y ij.-‘""t'_:-..__
o= 0.6 - '7_ [ % I3 Al

4+ 1 — Mean By Y X ** ]
| Actual Value X '
X 5 N *+ Observations

| E— R
£ T I, *s LA + t

) _.". ) ANty




We propagate through time one Gaussian process
for each of our sample set @s, adjusting the weights
according to the data as we go.

2.5}

1.5¢

0.5

2 25 3 3.5

— Actual value
© Strongly weighted sample
Weakly weighted sample

¢ =0.9719
151
1 -
N kA - i~
B r s
- i S\ E
1 * £\ :
0.5 + i } ‘ £
; f *
* +
: 4 \
-0.5 ! |
* E
."' A ',{- / 'I'
-1+ : " : "‘ + '.1
+
-1.

0.5 1 1.5

+1SD

— Mean
"""" Actual Value
+ (Observations




Using doubly-Bayesian quadrature, we can select
samples of a period in order to perform inference for
a periodic function of unknown period.

2.5F

1.5F

0.5F

0.5 1 1.5 2 25 3 3.5 4
t

— Actual value
© Strongly weighted sample
Weakly weighted sample

¢ = 0.99867

1.5
1+ A
R * 5
:; 1'1 3 ' ‘:‘. . 7.'.. * *’.
- E E % iy
0.5 + g0
: : * +
of . |
-+ ‘1 1 -‘-
*
0.5
Y 1 3 Lo
:’ "A',_ [} -|:
9 o + |- "';
-1 1 v & 'y
s 05 1 15 2 25 3 3.5
t
+1SD
— Mean
"""" Actual Value
*+ (Observations




With Bayesian quadrature, we can also estimate the
posterior distributions for any hyperparameters.

Posterior for period hyperparameter ¢

35 a
m— Posterior
3t — — — Posterior Mean
25
2 -

p(¢|Data)
o




We now extend our Gaussian process framework to
changepoints and faults.

data

15 A

10 -




We introduce covariances for drastic changepoints.

samples




We introduce covariances for changepoints in input
scale.

samples




We introduce covariances for changepoints in
output scale.

samples




Changepoint covariances feature hyperparameters,
for which we can produce posterior distributions
using quadrature.

input scale pre-changepoint

Chanpgepoint in input scale

—
()

K

[

SE| |

changepoint location

it
oo

K(460,x)
=
>

<
=~

<
)

input scale post-changepoint

0 I I \T =
460 480 500 520 540 560

Changepoint detection requires the posterior for the
changepoint location hyperparameter.
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We can hence perform both prediction and
changepoint detection.

15 -

. observations

mean
+2 SD

10 -

I 1

0 0.2 0.4 0.6 0.8 1
changepoint location (time in past)

0 0.2 0.4 0.6 0.8 1




As data is usually weakly correlated across a
changepoint, we usually need only consider a few
changepoints in a window.

0.08 A Dow Jones return

0.06 - window 2

0044  -mmmm------ i— ______________

0.02 -

0 -

—0.02 -

R

—0.04{  teeeeeeeee-

_________________________

1973 changepoint changepoint
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We can identify the OPEC embargo in October 1973
and the resignation of Nixon in August 1974.

mean . Dow Jones return




A fault is defined as a change in our observation
model.
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We can perform prediction even when we have
uninformative faulty observations.
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W e introduce a drift covariance to model drift faults.

samples




W e can remove saccade faults from EEG data.
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Water sustainability requires fast and effective
monitoring of problematically-corrupted water data:
we need a method capable of managing
uncharacterised faults.
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By averaging over the faultiness of each datum, we
can perform effective fault removal for this data.
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Often we wish to take only the most informative
data; by defining the costs of observation and
uncertainty, we can perform optimal active data

selection.
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We can use our predictive error bars to perform
active data selection. For example, we might take a
loss function that is infinite if the predictive variance
for any time-series (sensor) ever exceeds some

threshold.
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A better alternative is to take a loss function that is
the sum of the predictive variances at each of our
time-series (sensors), along with a cost of
observation.

We'll then take an observation only when the
resulting expected reduction in summed-variance
exceeds the cost of observation.

The observation we choose will be the one that gives
the greatest expected reduction in summed-variance.
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Active data selection hence reduces the rate of
sampling during faulty, uninformative states.
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Bramblemet is a network of wireless weather
sensors deployed in the Solent.

BRAMBLEMET.CO.UK

WEATHER REPORTS FROM BRAMBLE BANK

Latest Report | Wind | Sea | Atmospheric Conditions | Tides
Archives | Technical Notes | About BRAMBLEMET | CSG

Latest Measurements on 28 September at 3:50 pm (BST)

Wind

Mean Speed
Highest Gust
Direction

More Details »
16.4 kn (F4)
19.8 kn (FS)

2k

Sea Conditions

More Details »

Tidal Height 419 m

Atmospheric Conditions More Details »
Air 5]l e

Sea ToRNSE

Barometric Pressure 1011 mb

Visibility 3.0 nm
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Bramblemet is used by port authorities and
recreational sailors.

an ASSOCIATED
BRITISH PORTS

—_—

Lifeboats

Like many sensor networks,
the remoteness of its sensors
mean that active data
selection is important.
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Please enjoy the demo!
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Active data selection takes fewer samples when the
data is faulty.
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Wannengrat hosts a remote weather sensor network
used for climate change science, for which
observations are costly.
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Our algorithm selects more observations during

interesting volatile periods.
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