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Gaussian processes are useful for sequential data, 
such as time-series and tracking applications. In 
particular, Gaussian processes can be used for active 
data selection (choosing the most informative data) 
in such systems. 



We often want to address functions of time, using 
Gaussian processes for tracking.  
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Gaussian processes for tracking.  
 



We often want to address functions of time, using 
Gaussian processes for tracking.  
 



Time-series demand computational efficiency: data 
arrives rapidly, and must be responded to promptly. 



Inversion is slow, O(n3) in matrix size n. 
Inversion is also unstable; conditioning 
errors are significant. 
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Gaussian process inference requires evaluating 
 
 
but you should never actually invert a matrix.  
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The Cholesky factorisation of a positive semi-
definite matrix K is relatively fast (1/3 O(n3) in 
matrix size n) and more numerically stable. 
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The upper triangular Cholesky factor can then be 
stored and used to solve v = K x for x very quickly  
(O(n2) in matrix size n) by back substitution. 
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If K is Toeplitz, there exists a very efficient method 
to solve v = K x for x (O(4n2) in matrix size n). 

A symmetric matrix K is Toeplitz if it can be written 
as  
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1007.605.1311.103.000
7.601007.605.1311.103.00
5.137.601007.605.1311.103.0
11.15.137.601007.605.1311.1
03.011.15.137.601007.605.13
003.011.15.137.601007.60
0003.011.15.137.60100

=K

A Gaussian process has a Toeplitz covariance matrix 
if we have linearly spaced observations and a 
stationary covariance function: this is common for 
time-series. 
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If a very large covariance matrix doesn’t have 
Toeplitz structure, we may wish to attempt 
sparsification, which also simplifies solving. 
 



There are many ways to sparsify our data; the 
simplest involve selecting a subset. Windowing 
represents a reasonable way to do this for sequential 
data. 
 



If we already have the Cholesky factor 
),chol( 1111 KR =

we can efficiently determine the updated factor 
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in O(n2). Similar is true for other types of Cholesky 
updates and downdates, and for solutions based upon 
them. A Toeplitz update is probably also possible. 
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function, one that 
gives a sparse 
precision matrix. 
This allows efficient 
O(n) computation. 

The Kalman filter is a Gaussian process with a special 
covariance 
 



The Kalman filter is a Gaussian process with a special 
covariance function, one that gives a sparse precision 
matrix. This allows efficient computation. 
 





The Kalman filter’s covariance is non-stationary: it 
grows with time! 
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Consider tracking a �D state x = (x, y).
Example: a feature in an image, or a vehicle position on an
approximately planar road or air temperature/air pressure.
Suppose at time tk the feature or vehicle position has prior

p(xk | z�:k−�) = N (xk;µk|k−�, Σk|k−�)

k | k− � means at timestep k but using only measurements
made up to timestep k− �. That is, before making a
measurement at timestep k. k | k is at timestep k including all
measurements up to and including timestep k.
Now make a measurement zk of xk at time k, with

p(zk | xk) = N (zk; xk,Rk)

We are after the posterior density p(xk | zk). Summing
precision, we know that the covariance must be updated to

Σ−�
k|k = Σ−�

k|k−� + R−�
k

and that the new precision-weighted mean is

µk|k = Σk|k(Σ
−�
k|k−�µk|k−� + R−�

k zk)
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♣ Example: using priors for tracking.
Prior:

µk|k−� =

�
−�
−�

�
Σk|k−� =

�
� �
� �

�

Likelihood:

zk =
�

�
�

�
Rk =

�
� �
� �

�

Posterior:

µk|k =

�
�.��
�.��

�

Σk|k =

�
�.�� �.��
�.�� �.��

�
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The prior is the posterior from the previous time
step, updated to take account of the dynamics.

Example: assume that the velocity at timestep k, uk is
constant, except for noise (i.e. the acceleration is pure noise)

xk = xk−� + uk−� ∆t

p(uk−�) = N
�
uk−�; v,Qk = σ�

�
� �
� �

��

where ∆t = (tk − tk−�) : we’ll take ∆t = � for simplicity
hencforth. Note that xk is the sum of two
Gaussian-distributed variables, xk−� and uk. Hence, xk is
another Gaussian with mean and variance

µk|k−� = µk−�|k−� + v
Σk|k−� = Σk−�|k−� +Qk.
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The Kalman Filter is representable using a
Markov chain.

Xi : Unknown state at time-step ti.
Zi : Known measurement at time-step ti.

Observations depend only on the corresponding state.
The states only depend on their neighbours. Given Xi−� and
Xi+�, Xi is independent of all other states: the precision matrix
over all observations would be sparse.
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The Kalman Filter is representable using a
Markov chain.

Using the product rule,

p(X�,X�,X�,X�)

= p(X�) p(X� | X�) p(X� | X�,X�) p(X� | X�,X�,X�)

and using the Markov chain

= p(X�) p(X� | X�) p(X� | X�) p(X� | X�).
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The Kalman Filter is given by the update cycle:

Posterior after step k− �:
p(xk−� | z�:k−�) = N (xk−�;µk−�|k−�,Σk−�|k−�).

Assume p(xk | xk−�) = N (xk; xk−� + v,Qk).
�. Prediction: p(xk | z�:k−�) = N (xk;µk|k−�,Σk|k−�), for

µk|k−� = µk−�|k−� + v
Σk|k−� = Σk−�|k−� +Qk.

�. Make measurement zk, p(zk | xk) = N (zk; xk,Rk).

�. Fuse measurement with prediction
Σ−�

k|k = Σ−�
k|k−� + R−�

k

µk|k = Σk|k(Σ
−�
k|k−�µk|k−� + R−�

k zk)
Posterior after step k: p(xk | z�:k) = N (xk;µk|k,Σk|k).
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♣ Example.
Posterior t = � Dynamics step � to � Measure at t = �

x�|� =
�
−�
−�

�
v =

�
�
�

�
z� =

�
�
�

�

Σ�|� =

�
� �
� �

�
Q� =

�
�.� �
� �.�

�
R� =

�
� �
� �

�

Prediction at t = �:

Σ�|� = Σ�|� +Q� =

�
�.� �.�
�.� �.�

�
x�|� = x�|� + v =

�
−�
−�

�

Fuse measurement at t = �:

Σ�|� =
�
Σ−�

�|� + R−�
�

�−�
=

�
�.��� �.���
�.��� �.���

�

x�|� = Σ�|�

�
Σ−�

�|� x�|� + R−�
� z�

�
=

�
�.��
�.��

�
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Berkeley Tracker in action
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Graphically ...

x(k|k)

P(k|k)

x(k+1|k)

P(k+1|k)

prediction
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e
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re
m
e
n
t

update

z(k)

R(k)

x(k+1|k+1)

P(k+1|k+1)
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A richer Kalman Filter:

Posterior after step k− �:
p(xk−� | z�:k−�) = N (xk−�;µk−�|k−�,Σk−�|k−�).

Assume p(xk | xk−�) = N (xk; F xk−�,Qk).
�. Prediction: p(xk | z�:k−�) = N (xk;µk|k−�,Σk|k−�), for

µk|k−� = F µk−�|k−�

Σk|k−� = F Σk−�|k−� F� +Qk.

�. Make measurement zk, p(zk | xk) = N (zk;H xk,Rk).

�. Fuse measurement with prediction
Σ−�

k|k = Σ−�
k|k−� +H�R−�

k H
µk|k = Σk|k(Σ

−�
k|k−�µk|k−� +H�R−�

k zk)
Posterior after step k: p(xk | z�:k) = N (xk;µk|k,Σk|k).
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Let’s assume our state evolves linearly
(according to F) over a time-step.

We also regard v as a member of the state x =
�
x, y, vx, vy

��,

e.g. xk =





x
y
vx
vy





k

=





� � ∆t �
� � � ∆t
� � � �
� � � �









x
y
vx
vy





k−�

+ εk−�,

p(εk−�) = N (εk−�; ��×�,Qk)

But recall that if y = A x, then Σy = A Σx A�.

Using this explains the prediction phase:

State µk|k−� = F µk−�|k−�
Covariance Σk|k−� = F Σk−�|k−� F� +Qk

.
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We assume measurements are linearly related to
the state.

That is, we have p(zk | xk) = N (zk;H xk,Rk). Here we will
assume that we can only measure x and y, not velocities, so

zk = H xk + ηk =

�
� � � �
� � � �

�



x
y
vx
vy





k

+ ηk

p(ηk) = N (ηk; ��×�,Rk)

The Woodbury matrix identity

(A+ U C V)−� = A− A−� U(C−� + VA−�U)−�V A−�

along with Gaussian identities gives the update phase:
State µk|k = Σk|k(Σ

−�
k|k−�µk|k−� +H�R−�

k zk)
Covariance Σk|k =

�
Σ−�

k|k−� +H�R−�
k H

�−�
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Bayes’ Theorem gives a more satisfying
derivation of the update phase.

Bayes’ theorem says that the posterior probability of the state
x given the data z is p(x | z) = p(z | x)p(x)/p(z). The prior of
the data is a constant, and of no interest.
Assume that the prior of the state (we’re not writing the
conditioning on z�:k−� for convenience) is a multivariate
Gaussian centred on µk|k−� with covariance Σk|k−�, then

p(xk) ∝ exp
�
−�/�

�
xk − µk|k−�

��
Σ−�

k|k−�

�
xk − µk|k−�

��
.

Similarly

p(zk | xk) ∝ exp
�
−�/� (zk −H xk)� R−�

k (zk −H xk)
�
.

We’ll de�ne p(xk | zk) as having the form

p(xk | zk) ∝ exp
�
−�/�

�
xk − µk|k

��
Σ−�

k|k
�
xk − µk|k

��
.
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Now we take the natural log of Bayes’ rule.

− ln p(xk | zk) = �/�
�
xk − µk|k

��
Σ−�

k|k
�
xk − µk|k

�
+ c�

= �/� (zk −H xk)� R−�
k (zk −H xk)

+�/�
�
xk − µk|k−�

��
Σ−�

k|k−�

�
xk − µk|k−�

�
+ c�

If you now complete the square by gathering terms in xk (that
is, x�k Axk and Bxk), you’ll �nd

− ln p(xk | zk) = �/�
�
xk − µk|k

��
Σ−�

k|k
�
xk − µk|k

�

where

µk|k = Σk|k(Σ
−�
k|k−�µk|k−� +H�R−�

k zk)

Σk|k =
�
Σ−�

k|k−� +H�R−�
k H

�−�
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The Kalman Filter can be extended to manage
the nth-order autoregressive model.

We often want to allow the next position to be a function of
not just the last position, but the last n positions. To do so, we
just augment the state with those extra positions. If n = �, we
have the state xk = [xk, xk−�]

�,

e.g. xk =
�

xk
xk−�

�
=

�
α β
� �

� �
xk−�

xk−�

�
+ εk−�,

p(εk−�) = N (εk−�; ��×�,Qk)

The Kalman Filter can then be trivially applied with

F =

�
α β
� �

�
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The Kalman Filter is an optimal recursive �lter
for systems where

the initial state is described by a Gaussian distribution,
the measurement noise and prediction or “plant” noise
are Gaussian, and
where both the state evolution is linear (F) and the
measurements are linearly related to the state (H).

We now brie�y mention two di�erent approaches to �ltering:
The Extended Kalman Filter, useful when the state
evolution and/or the measurement model is non-linear,
but the distributions are Gaussian.
The Particle Filter, useful when the distributions are very
non-Gaussian.
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The Extended Kalman Filter begins with a
Gaussian “prior”.

We begin with p(xk−�) = N (xk−�;µk−�|k−�,Σk−�|k−�).

However, rather than evolving linearly as xk = F xk−� the state
may evolve non-linearly as

xk = f(xk−�).

Now assume that the non-linear vector function f(·) is close to
linear, so the propagation of uncertainty can be linearized
about the current operating point.
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Recall the Jacobian matrix.
To avoid too many x’s and too many subscripts, suppose
y = f(x).
f is a “vector function” — that is a vector of functions. For
example, suppose y and x have length �.

y =




y�
y�
y�



 =




f�(x�, x�, x�)
f�(x�, x�, x�)
f�(x�, x�, x�)



 =




x�� + �x� + �/x�
−�/x� + cos(x�)
x� + x�/x� + x�





Then

∇f =




∂y�/∂x� ∂y�/∂x� ∂y�/∂x�
∂y�/∂x� ∂y�/∂x� ∂y�/∂x�
∂y�/∂x� ∂y�/∂x� ∂y�/∂x�



 =




�x� � −�/x��
�/x�� � − sin(x�)
� �/x� −x�/x�� + �





The numerical values in ∇f are computed at the current value
of x.
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Suppose we have the linear relation y = A x.
Now rewrite y as a slight deviation from y� = A x�,

y = y� + δy = A x = A (x� + δx) ⇒ δy = A δx

Now, no matter what the �xed point, the covariance of y is

Σy = E[δyδy�] = E[Aδxδx�A�] = AE[δxδx�]A� = AΣxA�

.
Now suppose y = f(x). A �st order Taylor expansion gives

y = y�+δy = f(x) ≈ f(x�)+
∂f
∂x

δx ⇒ δy =
∂f
∂x

δx = ∇f δx

Σy = ∇f Σx∇f�
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Similarly, measurements can be non-linearly
related to the state.

Rather than z = H x we assume

z = h(x)

And just as F was replaced by ∇f, H is replaced by ∇h, where

∇h =





∂z�/∂x� ∂z�/∂x� · · ·
∂z�/∂x� ∂z�/∂x� · · ·
...

... . . .





As before, numerical values of ∇h are computed at the

current value of x.
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The Extended Kalman Filter:

Posterior after step k− �:
p(xk−� | z�:k−�) = N (xk−�;µk−�|k−�,Σk−�|k−�).

Assume p(xk | xk−�) = N (xk; f(xk−�),Qk).
�. Prediction: p(xk | z�:k−�) = N (xk;µk|k−�,Σk|k−�), for

µk|k−� = f(µk−�|k−�) NB: we can use f exactly!

Σk|k−� = ∇f Σk−�|k−� ∇f� +Qk.

�. Make measurement zk, p(zk | xk)=N (zk;h(xk),Rk).

�. Fuse measurement with prediction
Σ−�

k|k = Σ−�
k|k−� +∇h�R−�

k ∇h
µk|k = Σk|k(Σ

−�
k|k−�µk|k−� +∇h�R−�

k zk)
Posterior after step k: p(xk | z�:k) = N (xk;µk|k,Σk|k).



�� / ��

Particle �lters are for multimodal densities.
The Kalman Filter can (and usually does) fail catastrophically
if the measurement density is multimodal.
Multimodal measurement pdfs enter when we use robust
statistical methods to identify rogue data or “outliers”.
Multimodal densities also emerge when we wish to represent
multiple hypotheses (one mode per hypothesis).

Consider a
contour tracker.
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Multiple hypotheses give multiple posterior
peaks.
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The particle �lter is a sample-based means of
sequential integration.

Our goal is to compute the posterior using Bayes’ rule,

p(x | z) = p(z | x) p(x)�
p(z | x) p(x) dx

.

For most multimodal
distributions, the integral
in the denominator is
intractable. Similarly, the
integrals for the mean,�
z p(z | x) dz, and

covariance are often
intractable.

p(z|x) p(x)

p(x|z) = k p(z|x) p(x)

p(x|z)



�� / ��

At timestep k− �, the posterior density is
represented using a set of N weighted particles,
{(s(i)k−�, π

(i)
k−�) | i = � . . .N}.

Each particle represents a particular instance of the state
Xk−� = sk−� at time k− �, with a weight πk−� and where�

i π
(i)
k−� = �.

Particles should (i) be clustered and (ii) have high weights
where there is high density, it’d be pointless to have lots of
particles with π = �.

State X

Probability

sample
weighted

posterior
density
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In summary,

� The Kalman Filter requires Gaussianity: linear
measurements and dynamics.

� The Extended Kalman Filter linearises non-linear
measurements and dynamics in order to e�ect analytic
�ltering.

� The Particle Filter uses samples to numerically resolve
inference for non-Gaussian systems.



An extension to the Extended Kalman Filter is to use 
a Gaussian process to model the transition function. 



x 

Hence we do not need simultaneous observations of 
all outputs. 

If there are multiple time-series (outputs), reframe 
the problem as having a single output, and an 
additional label input specifying the output. 
 



( ) ( )( ) ( ) ( )jijijjii llKxxKlxlxK ,,,,, =

separable for convenience 

If L is not too large, we could use 
the spherical parameterisation. 

If the inputs were previously x, and outputs were 
labelled by l = 1, ..., L,  we now need to specify a 
covariance over both x and l, e.g. 
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We can represent any covariance K using the 
spherical parameterisation. 
 



e.g. 

Some special large matrices can be represented in a 
compact way using the Kronecker product. 
 



A Gaussian process will have a Kronecker product 
for a covariance matrix if we use a product 
covariance function and a grid of samples. 
 

For example, taking the covariance that is separable 
over t and l, along with simultaneous observations 
for all sensors, gives a Kronecker product. 
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Recall that solving operations 
are typically O(n3)! 

If K is a Kronecker product, there exists a very 
efficient method to solve v = K x for x (particularly 
when v is itself a Kronecker product): 



Associated with our covariance function (and also 
our mean function) are a number of 
hyperparameters !, such as 

periods 

correlations 

 amplitudes 



Integrating over (marginalising) these unknown 
hyperparameters is usually non-analytic, and requires 
quadrature. 

parameter  
(period of a periodic function) 

lo
g-

lik
eli

ho
od

 



Re-cap from yesterday: Bayesian quadrature gives an 
excellent method for estimating the integrand – a 
Gaussian process. 

parameter  
(period of a periodic function) 

lo
g-

lik
eli

ho
od

 



As an example, consider a fixed sample set of 
hyperparameters !s, 
e.g. ! = the period of x(t). 
 



We propagate through time one Gaussian process 
for each of our sample set !s, adjusting the weights 
according to the data as we go. 
 



Using doubly-Bayesian quadrature, we can select 
samples of a period in order to perform inference for 
a periodic function of unknown period. 
 



With Bayesian quadrature, we can also estimate the 
posterior distributions for any hyperparameters.  
 



We now extend our Gaussian process framework to 
changepoints and faults. 



We introduce covariances for drastic changepoints. 



We introduce covariances for changepoints in input 
scale. 



We introduce covariances for changepoints in 
output scale. 



Changepoint covariances feature hyperparameters, 
for which we can produce posterior distributions 
using quadrature. 

Changepoint detection requires the posterior for the 
changepoint location hyperparameter. 

input scale pre-changepoint 

input scale post-changepoint 

changepoint location 



We can hence perform both prediction and 
changepoint detection. 



As data is usually weakly correlated across a 
changepoint, we usually need only consider a few 
changepoints in a window. 

window 2 
window 1 

changepoint changepoint 



We can identify the OPEC embargo in October 1973 
and the resignation of Nixon in August 1974.  



A fault is defined as a change in our observation 
model. 



We can perform prediction even when we have 
uninformative faulty observations.  



We introduce a drift covariance to model drift faults. 



We can remove saccade faults from EEG data. 



Water sustainability requires fast and effective 
monitoring of problematically-corrupted water data: 
we need a method capable of managing 
uncharacterised faults. 



By averaging over the faultiness of each datum, we 
can perform effective fault removal for this data. 



Often we wish to take only the most informative 
data; by defining the costs of observation and 
uncertainty, we can perform optimal active data 
selection. 



We can use our predictive error bars to perform 
active data selection. For example, we might take a 
loss function that is infinite if the predictive variance 
for any time-series (sensor) ever exceeds some 
threshold.  



A better alternative is to take a loss function that is 
the sum of the predictive variances at each of our 
time-series (sensors), along with a cost of 
observation. 
 
We’ll then take an observation only when the 
resulting expected reduction in summed-variance 
exceeds the cost of observation.  
 
The observation we choose will be the one that gives 
the greatest expected reduction in summed-variance.  



Active data selection hence reduces the rate of 
sampling during faulty, uninformative states. 



Bramblemet  is a network of wireless weather 
sensors deployed in the Solent. 



Bramblemet is used by port authorities and 
recreational sailors. 

Like many sensor networks, 
the remoteness of its sensors 
mean that active data 
selection is important. 



Please enjoy the demo! 



Active data selection takes fewer samples when the 
data is faulty. 



Wannengrat hosts a remote weather sensor network 
used for climate change science, for which 
observations are costly. 



Our algorithm selects more observations during 
interesting volatile periods.  
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