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Data driven paradigm

q Traditionally, the main focus in machine learning has been model
generation through a data driven paradigm.

q Combine a data set with a flexible class of models and, through
regularization, make predictions on unseen data.

q Problems
– Data is scarce relative to the complexity of the system.
– Model is forced to extrapolate.
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Mechanistic models

q Models inspired by the underlying knowledge of a physical system are
common in many areas.

q Description of a well characterized physical process that underpins the
system, typically represented with a set of differential equations.

q Identifying and specifying all the interactions might not be feasible.

q A mechanistic model can enable accurate prediction in regions where
there may be no available training data
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Hybrid systems

q We suggest a hybrid approach involving a mechanistic model of the
system augmented through machine learning techniques.

q Dynamical systems (e.g. incorporating first order and second order
differential equations).

q Partial differential equations for systems with multiple inputs.
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Latent variable model: definition

q Our approach can be seen as a type of latent variable model.

Y = UW + E,

where Y ∈ RN×D, U ∈ RN×Q , W ∈ RQ×D (Q < D) and E is a matrix
variate white Gaussian noise with columns e:,d ∼ N (0,Σ).

q In PCA and FA the common approach to deal with the unknowns is to
integrate out U under a Gaussian prior and optimize with respect to W.
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Latent variable model: alternative view

q Data with temporal nature and Gaussian (Markov) prior for rows of U
leads to the Kalman filter/smoother.

q Consider a joint distribution for p (U|t), t = [t1 . . . tN ]>, with the form of a
Gaussian process (GP),

p (U|t) =
Q∏

q=1

N
(
u:,q |0,Ku:,q ,u:,q

)
.

The latent variables are random functions, {uq(t)}Q
q=1 with associated

covariance Ku:,q ,u:,q .

q The GP for Y can be readily implemented. In [TSJ05] this is known as a
semi-parametric latent factor model (SLFM).
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Latent force model: mechanistic interpretation (1)

q We include a further dynamical system with a mechanistic inspiration.

q Reinterpret equation Y = UW + E, as a force balance equation

YB = US + Ẽ,

where S ∈ RQ×D is a matrix of sensitivities, B ∈ RD×D is diagonal matrix
of spring constants, W = SB−1 and ẽ:,d ∼ N

(
0,B>ΣB

)
.
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Latent force model: mechanistic interpretation (2)
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Latent force model: extension (1)

q The model can be extended including dampers and masses.

q We can write
YB + ẎC + ŸM = US + Ê ,

where
Ẏ is the first derivative of Y w.r.t. time
Ÿ is the second derivative of Y w.r.t. time
C is a diagonal matrix of damping coefficients
M is a diagonal matrix of masses
Ê is a matrix variate white Gaussian noise.
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Latent force model: extension (2)
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Latent force model: properties

q This model allows to include behaviors like inertia and resonance.

q We refer to these systems as latent force models (LFMs).

q One way of thinking of our model is to consider puppetry.
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Second Order Dynamical System

Using the system of second order differential equations

md
d2yd (t)

dt2 + Cd
dyd (t)

dt
+ Bdyd (t) =

Q∑
q=1

Sdquq(t),

where
uq(t) latent forces
yd (t) displacements over time

Cd damper constant for the d-th output
Bd spring constant for the d-th output
md mass constant for the d-th output
Sdq sensitivity of the d-th output to the q-th input.
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Second Order Dynamical System: solution

Solving for yd (t), we obtain

yd (t) =
Q∑

q=1

Ldq[uq](t),

where the linear operator is given by a convolution:

Ldq[uq](t) =
Sdq

ωd

∫ t

0
exp(−αd (t − τ)) sin(ωd (t − τ))uq(τ)dτ ,

with ωd =
√

4Bd − C2
d/2 and αd = Cd/2.
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Second Order Dynamical System: covariance matrix

Behaviour of the system summarized by the damping ratio:

ζd =
1
2

Cd/
√

Bd

ζd > 1 overdamped system
ζd = 1 critically damped system
ζd < 1 underdamped system
ζd = 0 undamped system (no friction)

Example covariance matrix:

ζ1 = 0.125 underdamped
ζ2 = 2 overdamped
ζ3 = 1 critically damped

f(t) y
1
(t) y

2
(t) y

3
(t)

f(
t)

y 1(t
)

y 2(t
)

y 3(t
)
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Second Order Dynamical System: samples from GP
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Joint samples from the ODE covariance, cyan: u (t), red: y1 (t)(underdamped)
and green: y2 (t) (overdamped) and blue: y3 (t) (critically damped).
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Motion Capture Data (1)

q CMU motion capture data, motions 18, 19 and 20 from subject 49.

q Motions 18 and 19 for training and 20 for testing.

(University of Manchester) Prior Knowledge and Sparse Methods 12/12/2009 17 / 51



Motion Capture Data (2)

q The data down-sampled by 32 (from 120 frames per second to 3.75).

q We focused on the subject’s left arm.

q For testing, we condition only on the observations of the shoulder’s
orientation (motion 20) to make predictions for the rest of the arm’s
angles.
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Motion Capture Results

Root mean squared (RMS) angle error for prediction of the left arm’s
configuration in the motion capture data. Prediction with the latent force model
outperforms the prediction with regression for all apart from the radius’s angle.

Latent Force Regression
Angle Error Error
Radius 4.11 4.02
Wrist 6.55 6.65

Hand X rotation 1.82 3.21
Hand Z rotation 2.76 6.14

Thumb X rotation 1.77 3.10
Thumb Z rotation 2.73 6.09
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Diffussion in the Swiss Jura
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Diffusion equation

q A simplified version of the diffusion equation is

∂yd (x, t)
∂t

=

p∑
j=1

κd
∂2yd (x, t)
∂x2

j
,

where yd (x, t) are the concentrations of each pollutant.

q The solution to the system is then given by

yd (x, t) =
Q∑

q=1

Sdq

∫
Rp

Gd (x,x′, t)uq(x′)dx′,

where uq(x) represents the concentration of pollutants at time zero and
Gd (x,x′, t) is the Green’s function given as

Gd (x,x′, t) =
1

2pπp/2T p/2
d

exp

− p∑
j=1

(xj − x ′j )
2

4Td

 ,
with Td = κd t .
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Prediction of Metal Concentrations

q Prediction of a primary variable by conditioning on the values of some
secondary variables.

Primary variable Secondary Variables
Cd Ni, Zn
Cu Pb, Ni, Zn
Pb Cu, Ni, Zn
Co Ni, Zn

q Comparison bewteen diffusion kernel, independent GPs and “ordinary
co-kriging”.

Metals IGPs GPDK OCK
Cd 0.5823±0.0133 0.4505±0.0126 0.5
Cu 15.9357±0.0907 7.1677±0.2266 7.8
Pb 22.9141±0.6076 10.1097±0.2842 10.7
Co 2.0735±0.1070 1.7546±0.0895 1.5
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LFM in the context of convolution processes

q Consider a set of functions {fd (x)}D
d=1.

q Each function can be expressed as

fd (x) =

∫
X

Gd (x− z)u(z)dz = Gd (x) ∗ u(x).

q Influence of more than one latent function, {uq(z)}Q
q=1 and inclusion of an

independent process wd (x)

yd (x) = fd (x) + wd (x) =
Q∑

q=1

∫
X

Gdq(x− z)uq(z)dz + wd (x).
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A pictorial representation

u(x)

u(x): latent function.
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Covariance of the output functions.

The covariance between yd (x) and yd ′(x′) is given as

cov [yd (x), yd ′(x′)] = cov [fd (x), fd ′(x′)] + cov [wd (x),wd ′(x′)] δd,d ′ ,

where cov [fd (x), fd ′(x′)]

Q∑
q=1

Q∑
q′=1

∫
X

Gdq(x− z)

∫
X

Gd ′q′(x′ − z′) cov [uq(z),uq′(z′)] dz′dz
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Likelihood of the full Gaussian process.

q The likelihood of the model is given by

p(y|X,φ) = N (0,Kf,f + Σ)

where y =
[
y>1 , . . . ,y

>
D

]> is the set of output functions, Kf,f covariance
matrix with blocks cov [fd , fd ′ ], Σ matrix of noise variances, φ is the set of
parameters of the covariance matrix and X = {x1, . . . ,xN} is the set of
input vectors.

q Learning from the log-likelihood involves the inverse of Kf,f + Σ, which
grows with complexity O(N3D3)
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Predictive distribution of the full Gaussian process.

q Predictive distribution at X∗

p(y∗|y,X,X∗,φ) = N (µ∗,Λ∗)

with

µ∗ = Kf∗,f(Kf,f + Σ)−1y

Λ∗ = Kf∗,f∗ − Kf∗,f(Kf,f + Σ)−1Kf,f∗ + Σ

q Prediction is O(ND) for the mean and O(N2D2) for the variance.
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Conditional prior distribution.

Sample from p(u) fd (x) =

∫
X

Gd (x− z)u(z)dz
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The conditional independence assumption I.

q This form for fd (x) leads to the following likelihood

p(f|u,Z) = N
(
f|Kf,uK−1

u,uu,Kf,f − Kf,uK−1
u,uKu,f

)
,

where
u discrete sample from the latent function
Z set of input vectors corresponding to u

Ku,u cross-covariance matrix between latent functions
Kf,u = K>u,f cross-covariance matrix between latent and output functions

q Even though we conditioned on u, we still have dependencies between
outputs due to the uncertainty in p(u|u).
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The conditional independence assumption II.

Our key assumption is that the outputs will be independent even if we
have only observed u rather than the whole function u.
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Better approximations can be obtained when E [u|u] approximates u.
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Comparison of marginal likelihoods

Integrating out u, the marginal likelihood is given as

p(y|Z,X,θ) =N
(
y|0,Kf,uK−1

u,uKu,f + blockdiag
[
Kf,f − Kf,uK−1

u,uKu,f
]
+ Σ

)
.
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Predictive distribution for the sparse approximation

Predictive distribution

p(y∗|y,X,X∗,Z,θ) = N
(
µ̃∗, Λ̃∗

)
, with

µ̃∗ = Kf∗,uA−1Ku,f(D + Σ)−1y

Λ̃∗ = D∗ + Kf∗,uA−1Ku,f∗ + Σ

A = Ku,u + Ku,f(D + Σ)−1Kf,u

D∗ = blockdiag
[
Kf∗,f∗ − Kf∗,uK−1

u,uKu,f∗
]
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Remarks

q For learning the computational demand is in the calculation of the
block-diagonal term which grows as O(N3D) +O(NDM2) (with Q = 1).
Storage is O(N2D) +O(NDM).

q For inference, the computation of the mean grows as O(DM) and the
computation of the variance as O(DM2), after some pre-computations
and for one test point.

q The functional form of the approximation is almost identical to that of the
Partially Independent Training Conditional (PITC) approximation [QR05].
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Additional conditional independencies
q The N3 term in the computational complexity and the N2 term in

storage in PITC are still expensive for larger data sets.
q An additional assumption is independence over the data points.
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Computational requirements

q The computational demand is now equal to O(NDM2). Storage is
O(NDM).

q For inference, the computation of the mean grows as O(DM) and the
computation of the variance as O(DM2), after some pre-computations
and for one test point.

q Similar to the Fully Independent Training Conditional (FITC)
approximation [QR05, SG06].
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Deterministic approximation

q We could also assume that given the latent functions the outputs are
deterministic.

q The marginal likelihood is given as

p(y|Z,X,θ) =N
(
0,Kf,uK−1

u,uKu,f + Σ
)
.

q Computation complexity is the same as FITC.

q Deterministic training conditional approximation (DTC).
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Examples

q For all our experiments we considered squared exponential covariance
functions for the latent process of the form

ku,u(x,x′) = exp
[
−1

2
(x− x′)> L (x− x′)

]
,

where L is a diagonal matrix which allows for different length-scales
along each dimension.

q The smoothing kernel had the same form,

Gd (τ ) =
Sd |Ld |1/2

(2π)p/2 exp
[
−1

2
τ>Ldτ

]
,

where Sd ∈ R and Ld is a symmetric positive definite matrix.
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Examples: Artificial data 1D
Four outputs generated from the full GP (D = 4).
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Artificial example (cont.)

Method SMSE y1(x) SMSE y2(x) SMSE y3(x) SMSE y4(x)
Full GP 1.06± 0.08 0.99± 0.06 1.10± 0.09 1.05± 0.09

DTC 1.06± 0.08 0.99± 0.06 1.12± 0.09 1.05± 0.09
FITC 1.06± 0.08 0.99± 0.06 1.10± 0.08 1.05± 0.08
PITC 1.06± 0.08 0.99± 0.06 1.10± 0.09 1.05± 0.09

Standarized mean square error (SMSE). All numbers are to be multiplied by 10−2.

Method MSLL y1(x) MSLL y2(x) MSLL y3(x) MSLL y4(x)
Full GP −2.27± 0.04 −2.30± 0.03 −2.25± 0.04 −2.27± 0.05

DTC −0.98± 0.18 −0.98± 0.18 −1.25± 0.16 −1.25± 0.16
FITC −2.26± 0.04 −2.29± 0.03 −2.16± 0.04 −2.23± 0.05
PITC −2.27± 0.04 −2.30± 0.03 −2.23± 0.04 −2.26± 0.05

Mean standardized log loss (MSLL). More negative values indicate better models.

Training times for iteration of each model are 1.97±0.02 secs for the full GP, 0.20±0.01
secs for DTC, 0.41± 0.03 for FITC and 0.59± 0.05 for the PITC.
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Predicting school examination scores

q Multitask learning problem.

q The goal is to predict the exam score obtained by a particular student
described by a set of 20 features belonging to a specific school (task).

q It consists of examination records from 139 secondary schools in years
1985, 1986 and 1987.

q Features include year of the exam, gender, VR band and ethnic group for
each student, which are transformed to dummy variables.

q Dataset consists of 4004 samples. Ten repetitions with 75% training and
25% testing.

q Gaussian smoothing function.
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Predicting school examination scores (cont.)
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D: DTC. F: FITC. P: PITC. ICM: Intrinsic coregionalization model [BCW08]. IND: Independent GPs [BCW08].
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A dynamic model for transcription regulation

q Microarray studies have made the simultaneous measurement of mRNA
from thousands of genes practical.

q Transcription is governed by the presence of absence of transcription
factor proteins that act as switches to turn on and off the expression of
the genes.

q The active concentration of these transcription factors is typically much
more difficult to measure.
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A dynamic model for transcription regulation (cont.)

q There are Q transcription factors {uq(t)}Q
q=1, each of them represented

through a Gaussian process, uq(t) ∼ GP
(
0, kuquq (t , t ′)

)
.

q Our model is based on the following differential equation [ALL09],

dfd
dt

= γd +
Q∑

q=1

Sdquq(t)− Bd fd (t),

where γd is the basal transcription rate of gene d , Sdq is the sensitivity of
gene d to the transcription factor uq(t) and Bd is the decay rate of mRNA.

(University of Manchester) Prior Knowledge and Sparse Methods 12/12/2009 44 / 51



A dynamic model for transcription regulation (cont.)

q Benchmark yeast cell cycle dataset of [SSZ+98].

q Data is preprocessed as described in [SLR06] with a final dataset of 1975
genes and 104 transcription factors. There are 24 time points for each
gene.

q We optimize the marginal likelihood through scaled conjugate gradient.
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A dynamic model for transcription regulation (cont.)
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A dynamic model for transcription regulation (cont.)
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– For ACE2, highest SNR values are obtained for CTS1, SCW11, DSE1 and DSE2,
while, for example, NCE4 appears to be repressed with a low SNR value
([SSZ+98, SLR06]).

– SWI5 appears to activate genes AMN1 and PLC2 ([CLCB01]).
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Swiss Jura example revisited
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D: DTC. F: FITC. P: PITC. FGP: Full Gaussian Process. CK: Cokriging [Goo97]. IND: Independent GPs [BCW08].

(University of Manchester) Prior Knowledge and Sparse Methods 12/12/2009 48 / 51



Conclusions

q Hybrid approach for the use of simple mechanistic models with Gaussian
processes.

q Convolution processes as a way to augment data-driven models with
characteristics of physical systems.

q Gaussian process as meaningful prior distributions.

q Sparse approximations for multiple outputs convolved GP exploiting
conditional independencies.
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