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Outline

e Multi-task learning and related problems

e Multi-task feature learning (trace norm, Schatten L, norms, non-convex
regularizers)

e Representer theorems; “kernelization”



Multi-Task Learning

Taskst=1,...,n

m examples per task are given: (i1, Y1), -« -5 (Ttm, Yem) € X X Y

(simplification: sample sizes need not be equal; subsumes case of
common input data)

Predict using functions f;, : X —= Y., t=1,....n

When the tasks are related, learning the tasks jointly should perform
better than learning each task independently

Especially important when few data points are available per task
(small m); in such cases, independent learning is not successful



Transfer

Want good generalization on the n given tasks but also on new tasks
(transfer learning)

Given a few examples from a new task t, {(xy1, Y1), - - - (Tpro, Yre)
want to learn f

Do this by “transferring” the common task structure / features learned
from the n tasks

Transfer is an important feature of human intelligence



Multi-Task Applications

e Marketing databases, collaborative filtering, recommendation systems
(e.g. Netflix); task = product preferences for each person

Description
Closure Type of Type of wine Price Your rating
winery
Metacork International Blush red $25
Metacork Mid-sized regional | Dry white $20
Traditional cork Small boutique Dry red $20
Screwcap International Dry red $30
Metacork Small boutique Aromatic white $30
Traditional cork International Dry white $15
Screwcap Large national Blush red $20
Synthetic cork Intemational Aromatic white $20




Matrix Completion

e Matrix completion

minimize rank(W)
W eIR4X"n

s.t. wi; = Yij, \V/(’L,]) clk

e Special case of multi-task learning (input vectors are elements of the
canonical basis)

e Each column of the matrix corresponds to the regression vector for a
task; emphasis is on recovery of the matrix; in learning we are also
interested in generalization



Related Problems

Domain adaptation / transfer
Multi-view learning
Multi-label learning

Multi-task learning is a broad problem; no single method can solve
everything;



Learning Multiple Tasks with a Common Kernel

e Learn a common kernel K (x,x") = (x, Dx’) from a convex set of
kernels:

n m

inf ZZE((wt,wti>,yti) + v tr(W'D™'W)  (MTL)

w]_,...,/UJnE]R,d tzl 'l:]_
D>0, tr(D)<1

| |
where W = |w1 ... wy,



Learning Multiple Tasks with a Common Kernel

e Jointly convex problem in (W, D)

e The choice of constraint tr(D) < 1 is important; intuitively, penalizes
the number of common features (eigenvectors of D)

e Once we have learned D, we can transfer it to learning of a new task ¢’

m

A

min E(<waxt’i>7yt’i) —|-’}/<’(U,D_1w>



Alternating Minimization Algorithm

e Alternating minimization over W and D

s, e . . . . . e L Id
Initialization: given initial D, e.g. D = ¢

while convergence condition is not true do
fort=1,...,n learn w; independently by minimizing

g B((w, w), yes) + 7 {w, D)

end for
(WwT)z

set D = T
tr(WW )2

end while



Alternating Minimization (contd.)
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e Compare computational cost with a gradient descent on W only
(n := learning rate)
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Alternating Minimization (contd.)

e Small number of iterations (typically fewer than 50 in experiments)

e Alternative algorithms: singular value thresholding [Cai et al. 2008§],
Bregman-type gradient descent [Ma et al. 2009 etc.

e Non-SVD alternatives like [Rennie & Srebro 2005, Maurer 2007] or
SOCP methods [Srebro et al. 2005, Liu and Vandenberghe 2008]
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Trace Norm Regularization

Problem (M7 L) is equivalent to

min Y ¥ E((ws wi), yu) + v [WIE (TR)

dXn
Welr t—1 =1

The trace norm (or nuclear norm) |[W||¢- is the sum of the singular
values of W

W=Uxv'

IWer = Z%(W)
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Trace Norm vs. Rank

Problem (7R) is a convex relaxation of the problem

min E({we, 244), yei) + yrank(W
ey ;; ((we, i), yei) + (W)

NP-hard problem

Rank and trace norm correspond to Ly, L on the vector of singular
values

Hence one (qualified) interpretation: we want the task parameter
vectors w; to lie on a low dimensional subspace
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Machine Learning Interpretations

Learning a common linear kernel for all tasks (discussed already)
Maximum likelihood (learning a Gaussian covariance with fixed trace)

Matrix factorization

IWler =

N | —

min _(|F|z, + |Gl%,)
F'G=W

MAP in a graphical model (as above)

Gaussian process interpretation
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“Rotation invariant” Group Lasso

e Problem (M7 L) is equivalent to

min Z ZE(<at, U'zi), yri)

dxXn
I‘C‘ZEC]lR N =1 i—1
UecR** U'U=I

where HAHQ,l = Z Z&t

1=1 t=1

15



Experiment (Computer Survey)

Consumers’ ratings of products [Lenk et al. 1996]

180 persons (tasks)

8 PC models (training examples)

13 binary input variables (RAM, CPU, price etc.) + bias term
Integer output in {0,...,10} (likelihood of purchase)

The square loss was used
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Experiment (Computer Survey)

1
TERAMSCCPUHD CD CA CO AV WA SW GU PR

Method RMSE
Alternating Alg. 1.93
Hierarchical Bayes
[Lenk et al.] 1.90
Independent 3.88
Aggregate 2.35
Group Lasso 2.01

e The most important feature (eigenvector of D) weighs technical
characteristics (RAM, CPU, CD-ROM) vs. price
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Generalizations: Spectral Regularization

Generalize (M7 L):

mn m

inf Z Z E ((we, Tti), Yei) + v HWH;%

dxXn
WelR™ ™ 1,1

where ||[W||,, is the Schatten L,, norm of the singular values of W
L1 — L5 trade-off
Can be generalized to a family of spectral functions

A similar alternating algorithm can be used
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Generalizations: Learning Groups of Tasks

Assume heterogeneous environment, i.e. K low dimensional subspaces

Learn a partition of tasks in K groups

inf min min E ((w;. T+ N 4~ lw,. DT w
Dq,...,Dg>0 — k=1 ’th]Rd z; (< ty tz>vytz) 7< ty ML t>
tI‘(Dk,)Sl 1=
The representation learned is (151, . ,f)K); we can transfer this

representation to easily learn a new task

Non-convex problem; we use stochastic gradient descent
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Nonlinear Kernels

e An important note: all methods presented satisfy a multi-task
representer theorem (a type of necessary optimality condition)

e This fact enables “kernelization”, i.e. we may use a given kernel (e.g.
polynomial, RBF) via its Gram matrix

e \We now expand on this observation
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Representer Theorems

e Consider any learning problem of the form

e This problem can be “kernelized” if €} satisfies the “classical”’ rep. thm.

m
w = Z C;T;
i=1
(a necessary but not sufficient optimality condition)
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Representer Theorems (contd.)

Theorem. The “classical” rep. thm. for single-task learning, holds if and
only if there exists a nondecreasing function h : IRy — IR such that

Q(w) = h({w, w)) Vw € IR
(under differentiability assumptions)

e Sufficiency of the condition was known [Kimeldorf & Wahba, 1970,
Schélkopf et al., 2001 etc.]
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Representer Theorems (contd.)

e Sketch of the proof: equivalent condition is

Q(w + p) > Q(w)  for all w,p such that (w,p) = 0.
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Multi-Task Representer Theorems

e Our multi-task formulations satisfy a multi-task representer theorem

n m

b= Y ey Vte{l,...n}  (RT.)

s=1 1=1

e All tasks are involved in this expression (unlike the single-task
representer theorem < Frobenius norm regularization)

e Generally, consider any matrix optimization problem of the form

ZZE wtaxtz ytz)+Q(W>

wl 7 neIPbd t 1 'L—
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Multi- Task Representer Theorems (contd.)

e Definitions:

S” = the positive semidefinite cone
The function A : S} — IR is matrix nondecreasing, if

h(A)<h(B) VYABeS" st A<D

Theorem. Rep. thm. (R.7T.) holds if and only if there exists a matriz
nondecreasing function h : S — IR such that

QW) = h(W'W) VW € R*"

(under differentiability assumptions)
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Implications

The theorem tells us when a matrix learning problem can be
“kernelized”

In single-task learning, the choice of A does not matter essentially

However, in multi-task learning, the choice of h is important
(since =< is a partial ordering)

Many valid regularizers: Schatten L, norms || - ||,, rank, orthogonally
invariant norms, norms of type W — ||[WM||, etc.
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Refinements of the MTL Representer Theorem

e Write (R.7.) in matrix notation
W =XC

where
n m

includes all the input data (for all the tasks)

e {Total sample size} x n variables to learn

e How does it relate to “per task” representations of the form

( X0 )n

s=1
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Refinements of the MTL Representer Theorem (contd.)

Theorem. )
W=(.. Xsas ...)._ R

s=1

for some positive semidefinite matrix R and some o

e The input sample for task s appears with the same coefficients o
across all tasks, up to normalization

e Intuitively, the dependences among tasks may vary; but the input
sample for each task is like a “module”

e Equivalently, C' consists of blocks of rank one matrices
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Refinements of the MTL Representer Theorem (contd.)

e Only {total sample size} + Z(n? + n) variables are needed

e This holds for all Schatten L, norms except the spectral norm (for
which one may choose one such solution from an infinite set)

e |t also holds for a more general family of orthogonally invariant norms
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Conclusion

Multi-task learning is ubiquitous; exploiting task relatedness can
enhance learning performance significantly

Multi-task learning by learning a common linear kernel

Gives rise to regularization with the trace norm, spectral norms and
non-convex regularizers

Necessary and sufficient conditions for representer theorems (in both
the multi-task and single-task setting); implies kernelization of many
multi-task methods
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