Multi-Task Learning and Matrix Regularization

Andreas Argyriou

TTI Chicago

Outline

- Multi-task learning and related problems
- ullet Multi-task feature learning (trace norm, Schatten L_p norms, non-convex regularizers)
- Representer theorems; "kernelization"

Multi-Task Learning

- Tasks $t = 1, \ldots, n$
- m examples per task are given: $(x_{t1}, y_{t1}), \ldots, (x_{tm}, y_{tm}) \in \mathcal{X} \times \mathcal{Y}$ (simplification: sample sizes need not be equal; subsumes case of common input data)
- Predict using functions $f_t: \mathcal{X} \to \mathcal{Y}, \ t = 1, \dots, n$
- When the tasks are related, learning the tasks jointly should perform better than learning each task independently
- Especially important when few data points are available per task (small m); in such cases, independent learning is not successful

Transfer

- Want good generalization on the n given tasks but also on new tasks (transfer learning)
- Given a few examples from a new task t', $\{(x_{t'1}, y_{t'1}), \ldots, (x_{t'\ell}, y_{t'\ell})\}$, want to learn $f_{t'}$
- ullet Do this by "transferring" the common task structure / features learned from the n tasks
- Transfer is an important feature of human intelligence

Multi-Task Applications

• Marketing databases, collaborative filtering, recommendation systems (e.g. Netflix); task = product preferences for each person

Description				
Closure	Type of winery	Type of wine	Price	Your rating
Metacork	International	Blush red	\$25	
Metacork	Mid-sized regional	Dry white	\$20	
Traditional cork	Small boutique	Dry red	\$20	
Screwcap	International	Dry red	\$30	
Metacork	Small boutique	Aromatic white	\$30	
Traditional cork	International	Dry white	\$15	
Screwcap	Large national	Blush red	\$20	
Synthetic cork	International	Aromatic white	\$20	

Matrix Completion

• Matrix completion

- Special case of multi-task learning (input vectors are elements of the canonical basis)
- Each column of the matrix corresponds to the regression vector for a task; emphasis is on recovery of the matrix; in learning we are also interested in generalization

Related Problems

- Domain adaptation / transfer
- Multi-view learning
- Multi-label learning
- Multi-task learning is a *broad problem*; no single method can solve everything;

Learning Multiple Tasks with a Common Kernel

• Learn a common kernel $K(x,x')=\langle x,Dx'\rangle$ from a *convex* set of kernels:

$$\inf_{\substack{w_1, \dots, w_n \in \mathbb{R}^d \\ D \succ 0, \text{ tr}(D) < 1}} \sum_{t=1}^n \sum_{i=1}^m E\left(\langle w_t, x_{ti} \rangle, y_{ti}\right) + \gamma \operatorname{tr}(W^\top D^{-1}W) \quad (\mathcal{MTL})$$

$$\sum_{t=1}^{n} \langle w_t, D^{-1} w_t \rangle$$

where
$$W = \begin{pmatrix} w_1 & \dots & w_n \\ & & & \end{pmatrix}$$

Learning Multiple Tasks with a Common Kernel

- Jointly convex problem in (W, D)
- The choice of constraint $tr(D) \le 1$ is important; intuitively, penalizes the number of common features (eigenvectors of D)
- ullet Once we have learned \hat{D} , we can *transfer* it to learning of a new task t'

$$\min_{w \in \mathbb{R}^d} \sum_{i=1}^m E\left(\langle w, x_{t'i} \rangle, y_{t'i}\right) + \gamma \langle w, \hat{D}^{-1}w \rangle$$

Alternating Minimization Algorithm

ullet Alternating minimization over W and D

Initialization: given initial D, e.g. $D = \frac{I_d}{d}$ while convergence condition is not true **do**

for t = 1, ..., n learn w_t independently by minimizing

$$\sum_{i=1}^{m} E(\langle w, x_{ti} \rangle, y_{ti}) + \gamma \langle w, D^{-1}w \rangle$$

end for

$$\operatorname{set} D = \frac{(WW^{\top})^{\frac{1}{2}}}{\operatorname{tr}(WW^{\top})^{\frac{1}{2}}}$$

end while

Alternating Minimization (contd.)

• Compare computational cost with a gradient descent on W only $(\eta := \text{learning rate})$

Alternating Minimization (contd.)

- Small number of iterations (typically fewer than 50 in experiments)
- Alternative algorithms: singular value thresholding [Cai et al. 2008], Bregman-type gradient descent [Ma et al. 2009] etc.
- Non-SVD alternatives like [Rennie & Srebro 2005, Maurer 2007] or SOCP methods [Srebro et al. 2005, Liu and Vandenberghe 2008]

Trace Norm Regularization

Problem (\mathcal{MTL}) is equivalent to

$$\min_{W \in \mathbb{R}^{d \times n}} \sum_{t=1}^{n} \sum_{i=1}^{m} E(\langle w_t, x_{ti} \rangle, y_{ti}) + \gamma \|W\|_{tr}^2 \tag{TR}$$

The trace norm (or nuclear norm) $||W||_{tr}$ is the sum of the singular values of W

$$W = U\Sigma V^{\top}$$

$$||W||_{tr} = \sum_{i} \sigma_i(W)$$

Trace Norm vs. Rank

ullet Problem (\mathcal{TR}) is a convex relaxation of the problem

$$\min_{W \in \mathbb{R}^{d \times n}} \sum_{t=1}^{n} \sum_{i=1}^{m} E(\langle w_t, x_{ti} \rangle, y_{ti}) + \gamma \operatorname{rank}(W)$$

- NP-hard problem
- Rank and trace norm correspond to L_0 , L_1 on the vector of singular values
- Hence one (qualified) interpretation: we want the task parameter vectors w_t to lie on a *low dimensional* subspace

Machine Learning Interpretations

- Learning a common *linear kernel* for all tasks (discussed already)
- Maximum likelihood (learning a Gaussian covariance with fixed trace)
- Matrix factorization

$$||W||_{tr} = \frac{1}{2} \min_{F^{\top}G = W} (||F||_{Fr}^2 + ||G||_{Fr}^2)$$

- MAP in a graphical model (as above)
- Gaussian process interpretation

"Rotation invariant" Group Lasso

• Problem (\mathcal{MTL}) is equivalent to

$$\min_{\substack{A \in \mathbb{R}^{d \times n} \\ U \in \mathbb{R}^{d \times d}, \ U^{\top}U = I}} \sum_{t=1}^{n} \sum_{i=1}^{m} E(\langle a_t, U^{\top} x_{ti} \rangle, y_{ti}) + \gamma \|A\|_{2,1}^{2}$$

where
$$\|A\|_{2,1} := \sum_{i=1}^d \sqrt{\sum_{t=1}^n a_{it}^2}$$

Experiment (Computer Survey)

- Consumers' ratings of products [Lenk et al. 1996]
- 180 persons (tasks)
- 8 PC models (training examples)
- 13 binary input variables (RAM, CPU, price etc.) + bias term
- Integer output in $\{0, \dots, 10\}$ (likelihood of purchase)
- The square loss was used

Experiment (Computer Survey)

Method	RMSE
Alternating Alg.	1.93
Hierarchical Bayes [Lenk et al.]	1.90
Independent	3.88
Aggregate	2.35
Group Lasso	2.01

 \bullet The most important feature (eigenvector of D) weighs technical characteristics (RAM, CPU, CD-ROM) vs. price

Generalizations: Spectral Regularization

• Generalize (\mathcal{MTL}) :

$$\inf_{W \in \mathbb{R}^{d \times n}} \sum_{t=1}^{n} \sum_{i=1}^{m} E(\langle w_t, x_{ti} \rangle, y_{ti}) + \gamma \|W\|_p^2$$

where $||W||_p$ is the Schatten L_p norm of the singular values of W

- $L_1 L_2$ trade-off
- Can be generalized to a family of spectral functions
- A similar alternating algorithm can be used

Generalizations: Learning Groups of Tasks

- ullet Assume heterogeneous environment, i.e. K low dimensional subspaces
- ullet Learn a partition of tasks in K groups

$$\inf_{\substack{D_1,\dots,D_K\succ 0\\\operatorname{tr}(D_k)\leq 1}} \sum_{t=1}^n \min_{k=1}^K \min_{w_t\in\mathbb{R}^d} \left\{ \sum_{i=1}^m E\left(\langle w_t, x_{ti}\rangle, y_{ti}\right) + \gamma \langle w_t, D_k^{-1}w_t\rangle \right\}$$

- The representation learned is $(\hat{D}_1,\ldots,\hat{D}_K)$; we can transfer this representation to easily learn a new task
- Non-convex problem; we use stochastic gradient descent

Nonlinear Kernels

- An important note: all methods presented satisfy a *multi-task* representer theorem (a type of necessary optimality condition)
- This fact enables "kernelization", i.e. we may use a given kernel (e.g. polynomial, RBF) via its Gram matrix
- We now expand on this observation

Representer Theorems

Consider any learning problem of the form

$$\min_{w \in \mathbb{R}^d} \sum_{i=1}^m E\left(\langle w, x_i \rangle, y_i\right) + \Omega(w)$$

ullet This problem can be "kernelized" if Ω satisfies the "classical" rep. thm.

$$\hat{w} = \sum_{i=1}^{m} c_i x_i$$

(a necessary but not sufficient optimality condition)

Representer Theorems (contd.)

Theorem. The "classical" rep. thm. for single-task learning, holds if and only if there exists a nondecreasing function $h: \mathbb{R}_+ \to \mathbb{R}$ such that

$$\Omega(w) = h(\langle w, w \rangle) \qquad \forall w \in \mathbb{R}^d$$

(under differentiability assumptions)

• Sufficiency of the condition was known [Kimeldorf & Wahba, 1970, Schölkopf et al., 2001 etc.]

Representer Theorems (contd.)

• Sketch of the proof: equivalent condition is

$$\Omega(w+p) \geq \Omega(w)$$
 for all w, p such that $\langle w, p \rangle = 0$.

Multi-Task Representer Theorems

• Our multi-task formulations satisfy a multi-task representer theorem

$$\hat{w}_t = \sum_{s=1}^n \sum_{i=1}^m c_{si}^{(t)} x_{si} \qquad \forall t \in \{1, \dots, n\}$$
 (R.T.)

- All tasks are involved in this expression (unlike the single-task representer theorem ⇔ Frobenius norm regularization)
- Generally, consider any matrix optimization problem of the form

$$\min_{w_1,\dots,w_n\in\mathbb{R}^d} \sum_{t=1}^n \sum_{i=1}^m E\left(\langle w_t, x_{ti} \rangle, y_{ti}\right) + \Omega(W)$$

Multi-Task Representer Theorems (contd.)

Definitions:

 $\mathbf{S}^n_+=$ the positive semidefinite cone The function $h:\mathbf{S}^n_+\to {\rm I\!R}$ is matrix nondecreasing, if

$$h(A) \le h(B)$$
 $\forall A, B \in \mathbf{S}^n_+$ s.t. $A \le B$

Theorem. Rep. thm. ($\mathcal{R}.\mathcal{T}$.) holds if and only if there exists a matrix nondecreasing function $h: \mathbf{S}^n_+ \to \mathbb{R}$ such that

$$\Omega(W) = h(W^{\top}W) \qquad \forall \ W \in \mathbb{R}^{d \times n}$$

(under differentiability assumptions)

Implications

- The theorem tells us when a matrix learning problem can be "kernelized"
- In single-task learning, the choice of h does not matter essentially
- However, in multi-task learning, the choice of h is important (since \leq is a partial ordering)
- Many valid regularizers: Schatten L_p norms $\|\cdot\|_p$, rank, orthogonally invariant norms, norms of type $W \mapsto \|WM\|_p$ etc.

Refinements of the MTL Representer Theorem

• Write $(\mathcal{R}.\mathcal{T}.)$ in matrix notation

$$\hat{W} = XC$$

where

$$X = \begin{pmatrix} \dots & x_{si} & \dots \\ & & \end{pmatrix}_{s=1}^{n} \xrightarrow{i=1}^{m}$$

includes all the input data (for all the tasks)

- ullet {Total sample size} imes n variables to learn
- How does it relate to "per task" representations of the form

$$(\ldots X_s \alpha_s \ldots)_{s=1}^n$$

Refinements of the MTL Representer Theorem (contd.)

Theorem.

$$\hat{W} = \begin{pmatrix} \dots & X_s \alpha_s & \dots \end{pmatrix}_{s=1}^n R$$

for some positive semidefinite matrix R and some α_s

- The input sample for task s appears with the same coefficients α_s across all tasks, up to normalization
- Intuitively, the dependences among tasks may vary; but the input sample for each task is like a "module"
- Equivalently, C consists of blocks of rank one matrices

Refinements of the MTL Representer Theorem (contd.)

- Only $\{\text{total sample size}\} + \frac{1}{2}(n^2 + n)$ variables are needed
- This holds for all Schatten L_p norms except the spectral norm (for which one may choose one such solution from an infinite set)
- It also holds for a more general family of orthogonally invariant norms

Conclusion

- Multi-task learning is ubiquitous; exploiting task relatedness can enhance learning performance significantly
- Multi-task learning by learning a common linear kernel
- Gives rise to regularization with the *trace norm*, *spectral norms* and *non-convex* regularizers
- Necessary and sufficient conditions for representer theorems (in both the multi-task and single-task setting); implies kernelization of many multi-task methods