
Multi-Task Learning and Matrix Regularization

Andreas Argyriou

TTI Chicago



Outline

• Multi-task learning and related problems

• Multi-task feature learning (trace norm, Schatten Lp norms, non-convex
regularizers)

• Representer theorems; “kernelization”
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Multi-Task Learning

• Tasks t = 1, . . . , n

• m examples per task are given: (xt1, yt1), . . . , (xtm, ytm) ∈ X × Y

(simplification: sample sizes need not be equal; subsumes case of
common input data)

• Predict using functions ft : X → Y , t = 1, . . . , n

• When the tasks are related, learning the tasks jointly should perform
better than learning each task independently

• Especially important when few data points are available per task

(small m); in such cases, independent learning is not successful
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Transfer

• Want good generalization on the n given tasks but also on new tasks
(transfer learning)

• Given a few examples from a new task t′, {(xt′1, yt′1), . . . , (xt′ℓ, yt′ℓ)},
want to learn ft′

• Do this by “transferring” the common task structure / features learned
from the n tasks

• Transfer is an important feature of human intelligence
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Multi-Task Applications

• Marketing databases, collaborative filtering, recommendation systems
(e.g. Netflix); task = product preferences for each person
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Matrix Completion

• Matrix completion

minimize
W∈IRd×n

rank(W )

s.t. wij = yij, ∀ (i, j) ∈ E

• Special case of multi-task learning (input vectors are elements of the
canonical basis)

• Each column of the matrix corresponds to the regression vector for a
task; emphasis is on recovery of the matrix; in learning we are also
interested in generalization
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Related Problems

• Domain adaptation / transfer

• Multi-view learning

• Multi-label learning

• Multi-task learning is a broad problem; no single method can solve
everything;
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Learning Multiple Tasks with a Common Kernel

• Learn a common kernel K(x, x′) = 〈x,Dx′〉 from a convex set of
kernels:

inf
w1,...,wn∈IRd

D≻0, tr(D)≤1

n
∑

t=1

m
∑

i=1

E (〈wt, xti〉, yti) + γ tr(W⊤D−1W ) (MT L)

↑
n

∑

t=1

〈wt, D
−1wt〉

where W =



w1 . . . wn




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Learning Multiple Tasks with a Common Kernel

• Jointly convex problem in (W, D)

• The choice of constraint tr(D) ≤ 1 is important; intuitively, penalizes
the number of common features (eigenvectors of D)

• Once we have learned D̂, we can transfer it to learning of a new task t′

min
w∈IRd

m
∑

i=1

E (〈w, xt′i〉, yt′i) + γ 〈w, D̂−1w〉
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Alternating Minimization Algorithm

• Alternating minimization over W and D

Initialization: given initial D, e.g. D = Id
d

while convergence condition is not true do

for t = 1, . . . , n learn wt independently by minimizing
m
∑

i=1

E(〈w, xti〉, yti) + γ 〈w, D−1w〉

end for

set D = (WW⊤)
1
2

tr(WW⊤)
1
2

end while
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Alternating Minimization (contd.)

objective

function

0 20 40 60 80 100
24

25

26

27

28

29

 

 

η = 0.05
η = 0.03
η = 0.01
Alternating

seconds

50 100 150 200
0

1

2

3

4

5

6

 

 

Alternating

η = 0.05

#iterations #tasks

(green = alternating) (blue = alternating)

• Compare computational cost with a gradient descent on W only
(η := learning rate)
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Alternating Minimization (contd.)

• Small number of iterations (typically fewer than 50 in experiments)

• Alternative algorithms: singular value thresholding [Cai et al. 2008],
Bregman-type gradient descent [Ma et al. 2009] etc.

• Non-SVD alternatives like [Rennie & Srebro 2005, Maurer 2007] or
SOCP methods [Srebro et al. 2005, Liu and Vandenberghe 2008]
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Trace Norm Regularization

Problem (MT L) is equivalent to

min
W∈IRd×n

n
∑

t=1

m
∑

i=1

E(〈wt, xti〉, yti) + γ ‖W‖2
tr (T R)

The trace norm (or nuclear norm) ‖W‖tr is the sum of the singular
values of W

W = UΣV ⊤

‖W‖tr =
∑

i

σi(W )
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Trace Norm vs. Rank

• Problem (T R) is a convex relaxation of the problem

min
W∈IRd×n

n
∑

t=1

m
∑

i=1

E(〈wt, xti〉, yti) + γ rank(W )

• NP-hard problem

• Rank and trace norm correspond to L0, L1 on the vector of singular
values

• Hence one (qualified) interpretation: we want the task parameter
vectors wt to lie on a low dimensional subspace
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Machine Learning Interpretations

• Learning a common linear kernel for all tasks (discussed already)

• Maximum likelihood (learning a Gaussian covariance with fixed trace)

• Matrix factorization

‖W‖tr =
1

2
min

F⊤G=W
(‖F‖2

Fr + ‖G‖2
Fr)

• MAP in a graphical model (as above)

• Gaussian process interpretation
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“Rotation invariant” Group Lasso

• Problem (MT L) is equivalent to

min
A∈IRd×n

U∈IRd×d, U⊤U=I

n
∑

t=1

m
∑

i=1

E(〈at, U
⊤xti〉, yti) + γ ‖A‖2

2,1

where ‖A‖2,1 :=
d
∑

i=1

√

n
∑

t=1
a2

it

10 20 30 40 50 60 70 80 90 100

2

4

6

8

10

12

14

15



Experiment (Computer Survey)

• Consumers’ ratings of products [Lenk et al. 1996]

• 180 persons (tasks)

• 8 PC models (training examples)

• 13 binary input variables (RAM, CPU, price etc.) + bias term

• Integer output in {0, . . . , 10} (likelihood of purchase)

• The square loss was used
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Experiment (Computer Survey)

u1
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Alternating Alg. 1.93

Hierarchical Bayes
[Lenk et al.]

1.90

Independent 3.88
Aggregate 2.35

Group Lasso 2.01

• The most important feature (eigenvector of D) weighs technical

characteristics (RAM, CPU, CD-ROM) vs. price
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Generalizations: Spectral Regularization

• Generalize (MT L):

inf
W∈IRd×n

n
∑

t=1

m
∑

i=1

E (〈wt, xti〉, yti) + γ ‖W‖2
p

where ‖W‖p is the Schatten Lp norm of the singular values of W

• L1 − L2 trade-off

• Can be generalized to a family of spectral functions

• A similar alternating algorithm can be used
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Generalizations: Learning Groups of Tasks

• Assume heterogeneous environment, i.e. K low dimensional subspaces

• Learn a partition of tasks in K groups

inf
D1,...,DK≻0

tr(Dk)≤1

n
∑

t=1

K

min
k=1

min
wt∈IRd

{

m
∑

i=1

E (〈wt, xti〉, yti) + γ〈wt, D
−1
k wt〉

}

• The representation learned is (D̂1, . . . , D̂K); we can transfer this
representation to easily learn a new task

• Non-convex problem; we use stochastic gradient descent
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Nonlinear Kernels

• An important note: all methods presented satisfy a multi-task

representer theorem (a type of necessary optimality condition)

• This fact enables “kernelization”, i.e. we may use a given kernel (e.g.
polynomial, RBF) via its Gram matrix

• We now expand on this observation
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Representer Theorems

• Consider any learning problem of the form

min
w∈IRd

m
∑

i=1

E (〈w, xi〉, yi) + Ω(w)

• This problem can be “kernelized” if Ω satisfies the “classical” rep. thm.

ŵ =

m
∑

i=1

cixi

(a necessary but not sufficient optimality condition)
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Representer Theorems (contd.)

Theorem. The “classical” rep. thm. for single-task learning, holds if and
only if there exists a nondecreasing function h : IR+ → IR such that

Ω(w) = h(〈w, w〉) ∀w ∈ IRd

(under differentiability assumptions)

• Sufficiency of the condition was known [Kimeldorf & Wahba, 1970,

Schölkopf et al., 2001 etc.]
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Representer Theorems (contd.)

• Sketch of the proof: equivalent condition is

Ω(w + p) ≥ Ω(w) for all w, p such that 〈w, p〉 = 0.

w+p

w

0
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Multi-Task Representer Theorems

• Our multi-task formulations satisfy a multi-task representer theorem

ŵt =
n

∑

s=1

m
∑

i=1

c
(t)
si xsi ∀ t ∈ {1, . . . , n} (R.T .)

• All tasks are involved in this expression (unlike the single-task
representer theorem ⇔ Frobenius norm regularization)

• Generally, consider any matrix optimization problem of the form

min
w1,...,wn∈IRd

n
∑

t=1

m
∑

i=1

E (〈wt, xti〉, yti) + Ω(W )
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Multi-Task Representer Theorems (contd.)

• Definitions:

S
n
+ = the positive semidefinite cone

The function h : Sn
+ → IR is matrix nondecreasing, if

h(A) ≤ h(B) ∀ A, B ∈ S
n
+ s.t. A � B

Theorem. Rep. thm. (R.T .) holds if and only if there exists a matrix
nondecreasing function h : Sn

+ → IR such that

Ω(W ) = h(W⊤W ) ∀ W ∈ IRd×n

(under differentiability assumptions)
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Implications

• The theorem tells us when a matrix learning problem can be
“kernelized”

• In single-task learning, the choice of h does not matter essentially

• However, in multi-task learning, the choice of h is important
(since � is a partial ordering)

• Many valid regularizers: Schatten Lp norms ‖ · ‖p, rank, orthogonally
invariant norms, norms of type W 7→ ‖WM‖p etc.
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Refinements of the MTL Representer Theorem

• Write (R.T .) in matrix notation

Ŵ = XC

where

X =



. . . xsi . . .





n

s=1

m

i=1

includes all the input data (for all the tasks)

• {Total sample size} × n variables to learn

• How does it relate to “per task” representations of the form
(

. . . Xsαs . . .
)n

s=1
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Refinements of the MTL Representer Theorem (contd.)

Theorem.
Ŵ =

(

. . . Xsαs . . .
)n

s=1
R

for some positive semidefinite matrix R and some αs

• The input sample for task s appears with the same coefficients αs

across all tasks, up to normalization

• Intuitively, the dependences among tasks may vary; but the input
sample for each task is like a “module”

• Equivalently, C consists of blocks of rank one matrices
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Refinements of the MTL Representer Theorem (contd.)

• Only {total sample size} + 1
2(n

2 + n) variables are needed

• This holds for all Schatten Lp norms except the spectral norm (for
which one may choose one such solution from an infinite set)

• It also holds for a more general family of orthogonally invariant norms
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Conclusion

• Multi-task learning is ubiquitous; exploiting task relatedness can
enhance learning performance significantly

• Multi-task learning by learning a common linear kernel

• Gives rise to regularization with the trace norm, spectral norms and
non-convex regularizers

• Necessary and sufficient conditions for representer theorems (in both
the multi-task and single-task setting); implies kernelization of many
multi-task methods
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