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L Supervised dimension reduction

Information and sufficiency

A fundamental idea in statistical thought is to reduce data to
relevant information. This was the paradigm of R.A. Fisher

(beloved Bayesian) and goes back to at least Adcock 1878 and
Edgeworth 1884.
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Information and sufficiency

A fundamental idea in statistical thought is to reduce data to
relevant information. This was the paradigm of R.A. Fisher

(beloved Bayesian) and goes back to at least Adcock 1878 and
Edgeworth 1884.

X1, ..., X, drawn iid form a Gaussian can be reduced to i, 0.



Geometric perspectives for supervised dimension reduction

I—Supervised dimension reduction

Regression

Assume the model
Y =f(X) +e,

with X ¢ X CRP and Y € R.
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Regression

Assume the model
Y=fX)+e IEe=0,

with X ¢ X CRP and Y € R.

Data - D = {(x;, i)} < p(X,Y).
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If the data lives in a p-dimensional space X € IRP replace X with
O(X)eRY, p>d.
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L Supervised dimension reduction

Dimension reduction

If the data lives in a p-dimensional space X € IRP replace X with
O(X) e RY, p>>d.

My belief: physical, biological and social systems are inherently low
dimensional and variation of interest in these systems can be
captured by a low-dimensional submanifold.
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Supervised dimension reduction (SDR)

Given response variables Y, ..., Y, € IR and explanatory variables
or covariates Xi,..., X, € X C RP

Y, = f(X;)+ei, e No(0,02).
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L Supervised dimension reduction

Supervised dimension reduction (SDR)

Given response variables Y, ..., Y, € IR and explanatory variables
or covariates Xi,..., X, € X C RP

Y, = f(X,‘) +¢&i, € Ifl\cj N0(0,0'2).

Is there a submanifold S = Sy|x such that Y Il X | Ps(X) ?



Geometric perspectives for supervised dimension reduction

L Supervised dimension reduction

Visualization of SDR
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L Supervised dimension reduction

Linear projections capture nonlinear manifolds

In this talk Ps(X) = BT X where B = (b1, ..., by).

Semiparametric model
Yi = f(X;) +ei = g(b{ Xi,....bJ Xi) + ¢,

span B is the dimension reduction (d.r.) subspace.
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L Learning gradients

SDR model

Semiparametric model
Yi = f(X;) +¢i = g(b{ Xi,..., by X;) + i,

span B is the dimension reduction (d.r.) subspace.
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L Learning gradients

SDR model

Semiparametric model
Y; = f(Xi) +ei = g(b] Xi,....b) Xi) + i,
span B is the dimension reduction (d.r.) subspace.

Assume marginal distribution p, is concentrated on a manifold
M C IRP of dimension d < p.
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L Learning gradients

Gradients and outer products

Given a smooth function f the gradient is
T
Of (x of (x
Vf(x)——( () ()> }

Dxg 1 Oxp
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L Learning gradients

Gradients and outer products

Given a smooth function f the gradient is

V() = (%2, . %)

Ox1 ’ 8x,,
Define the gradient outer product matrix I’

= [ 5 500 ().

r = E[(Vf) ® (VF)].
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\ibi = Tb;.
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L Learning gradients

GOP captures the d.r. space

Suppose
y=Ff(X)+e=g(b{ X,...,b] X) +e¢.

Note that for B = (bx, ..., bg)

Aibi =Tb;.

Of (x)
8V,'

= v, (VFf(x)) # 0= b/ Th; #0.

If w L b; for all i then w'Tw = 0.
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Statistical interpretation

Linear case »
y=08"x+e, e No(0, o2).

Q = cov (E[X]Y]), £, = cov(X), 02 = var(Y).
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L Learning gradients

Statistical interpretation

Linear case .
y=08Tx+e &~ No(0,0?%).

Q = cov (E[X|Y]), £, = cov (X), 02 = var (Y).

2
UY

2
2 o2 “lov-1 .. 2v-lov-1
F:ay(l——) ZX QZX Nayzx QZX.
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L Learning gradients

Statistical interpretation

For smooth f(x)

y="f(x)+e ¢ iid No(0,02).

Q = cov (E[X]|Y]) not so clear.
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Partition into sections and compute local quantities
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Nonlinear case

Partition into sections and compute local quantities

v
X = UX"
=1

Q = COV(]E[XX,-|YX,-])
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Nonlinear case

Partition into sections and compute local quantities

A
X = UX"
=1

Q = COV(E[XX,-‘YX,-])
L = cov(Xy,)
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L Learning gradients

Nonlinear case

Partition into sections and compute local quantities

~
I
T

Xi

i=1
Q; = cov (E[Xx,- ‘ Yx,-])
L = cov(Xy,)
0? = var (Yx.)
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L Learning gradients

Nonlinear case

Partition into sections and compute local quantities

~
I
T

Xi

i=1
Q; = cov (E[Xx,- ‘ Yx,-])
L = cov(Xy,)
o? = var( Yx.)

mi = px;)-
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L Learning gradients

Nonlinear case
Partition into sections and compute local quantities
T
X U X;

Q; = cov(E[X\.[Yy.])
L = cov(Xy,)

o = var (Yy,)
mi = p(x;)-

A
=Y molsitox
i=1
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L Learning gradients

Estimating the gradient

Taylor expansion

fx5) + (VF(x), x5 — xi)
yi + (Vf(x),x;i —xi) if xi = x;.

Q

yi =~ f(xi)

Q
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I—Learning gradients
Estimating the gradient

Taylor expansion

f(x;) + (VE(x;), i — xi)
yi +(VF(xj),xi —xi) if xj = xj.

Q

yi = f(x;)

Q

Let f &~ Vf the following should be small

Z Wij()/i — Y- <F(XJ)7XJ _Xi>)2?

i?.j

wij = s"% exp(—||xi — x;||?/2s) enforces x; = x;.



Geometric perspectives for supervised dimension reduction

L Learning gradients

Estimating the gradient

The gradient estimate

" R " 2 "

o =arg min | =" wy (vi— v = (F)) 05 — %))+ MIFI%
fernr | N° =

ij=1

where |||k is a smoothness penalty, reproducing kernel Hilbert

space norm.
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L Learning gradients

Estimating the gradient

The gradient estimate

" R " 2 "
fo = arg min | — >~ wy (yi—y; = (F))T (g =)+ AlIF
fenr | 1% 570

where |||k is a smoothness penalty, reproducing kernel Hilbert
space norm.
Goto board.
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L Learning gradients

Computational efficiency

The computation requires fewer than n? parameters and is O(n®)
time and O(pn) memory

n
fD(X) = Z C,'7DK(X,',X)
i=1

cp = (c1py---,cap)" €R™P.
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L Learning gradients

Computational efficiency

The computation requires fewer than n? parameters and is O(n®)
time and O(pn) memory

I?D(X) = Z C,'7DK(X,', X)
i=1

cp = (c1py---,cap)" €R™P.

Define gram matrix K where Kjj = K(xi, x})

i T
= cpKcp.
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L Learning gradients

Estimates on manifolds

Mrginal distribution % is concentrated on a compact Riemannian manifold M € RY with isometric embedding
@ : M — RP and metric dagq and dp is the uniform measure on M.
Assume regular distribution

dpy (%)
dp

(i) The density v(x) = exists and is Holder continuous (c; > 0and 0 < 6 < 1)

[u(x) = v(u)] < a1 dig(x,u) Vx,u € M.
(ii) The measure along the boundary is small: (c; > 0)

pM({XEM:dM(X,aM)St})SCQt vt > 0.
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L Learning gradients

Convergence to gradient on manifold

Theorem
Under above regularity conditions on p, and f € C?(M), with
probability 1 — 6

1

7 1
* 2 —=
o) fo - Vol < Crog(5) (n7%).

where (d)* (projection onto tangent space) is the dual of the
map do.
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L Learning gradients

Multi-task learning

Definition

Single Task Notation n, samples (x;, y;)

Xj € RY

yi € {—1,1} for classification

Assume to be working in d > n; paradigm.



Geometric perspectives for supervised dimension reduction

L Learning gradients

Multi-task learning

Definition

Single Task Notation n; samples (x;, y;)

Xj € RY

yi € {—1,1} for classification

Assume to be working in d > n; paradigm.

Definition
Multi-task Learning (MTL) Formulation Given T tasks with
te{l,...,T}

Fe(x) = fo(x) + fe(x) + ¢, ¢ o No(0, o2).
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{fo.f1, ..

),
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Multi-task gradient learning

Estimate not just the functions

{fba ﬁ.a ceey fT}a

but the gradients as well

{(fo, Vo), (£, V) 1}
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L Learning gradients

Multi-task gradient learning

Estimate not just the functions

{fo, flu ceey fT}u

but the gradients as well

{(fo, V), (f:, V) {1}

This provides us with T + 1 matrices
1. % is the GOP estimate across all the tasks
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L Learning gradients

Multi-task gradient learning

Estimate not just the functions

{fo, flu ceey fT}u

but the gradients as well

{(fo, V), (f:, V) {1}

This provides us with T + 1 matrices
1. 9 is the GOP estimate across all the tasks
2. T1,... [T are the task specific GOP estimates.
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L Baysian Mixture of Inverses

Principal components analysis (PCA)

Algorithmic view of PCA:

1. Given X = (Xi,....,Xy) a p X n matrix construct

S=(X-X)(X-X)T
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L Baysian Mixture of Inverses

Principal components analysis (PCA)

Algorithmic view of PCA:

1. Given X = (Xi,....,Xy) a p X n matrix construct

S=(X-X)(X-X)T

2. Eigen-decomposition of 3

AjVi = 2v;.



Geometric perspectives for supervised dimension reduction

L Baysian Mixture of Inverses

Probabilistic PCA

X € IRP is charterized by a multivariate normal

X ~ No(u + Av, A),
v~ NO(O, Id)

u € IRP
A e RP*d
A € IRP*P
v e RY.
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L Baysian Mixture of Inverses

Probabilistic PCA

X € IRP is charterized by a multivariate normal

X ~ No(u + Av, A),
v~ NO(O, Id)

u € IRP

A c RP

A € IRP*P
v e RY.

v is a latent variable
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L Baysian Mixture of Inverses

SDR model

Semiparametric model
Yi = f(Xi) +ei = g(bf Xi,...,bJ X;) + i,

span B is the dimension reduction (d.r.) subspace.
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L Baysian Mixture of Inverses

Principal fitted components (PFC)

Define X, = (X | Y = y) and specify multivariate normal

distribution
Xy ~ NO([,Ly, A)a
by = p+ Avy
uwe RP
A € IRP¥9

d
vy, € R,
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L Baysian Mixture of Inverses

Principal fitted components (PFC)

Define X, = (X | Y = y) and specify multivariate normal

distribution
Xy ~ NO([,Ly, A)a
by = p+ Avy
uwe RP
A € IRP¥9
vy € RY.

B =A"1A
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I—Baysian Mixture of Inverses

Principal fitted components (PFC)

Define X, = (X | Y = y) and specify multivariate normal

distribution
Xy ~ NO(,U,y, A),
py = p+ Avy,
we RP
A e RPX9
vy € RY.
B =A"1A.

Captures global linear predictive structure. Does not generalize to
manifolds.



Geometric perspectives for supervised dimension reduction

L Baysian Mixture of Inverses

Mixture models and localization

A driving idea in manifold learning is that manifolds are locally
Euclidean.
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Euclidean.

A driving idea in probabilistic modeling is that mixture models are
flexible and can capture "nonparametric” distributions.
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I—Baysian Mixture of Inverses

Mixture models and localization

A driving idea in manifold learning is that manifolds are locally
Euclidean.

A driving idea in probabilistic modeling is that mixture models are
flexible and can capture "nonparametric” distributions.

Mixture models can capture local nonlinear predictive manifold
structure.
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L Baysian Mixture of Inverses

Model specification

Xy ~ No(pyx, A)
Pyx = [+ Avyx
Vyx ~ Gy,

Gy: density indexed by y having multiple clusters
uwe RP

e ~ N(0,A) with A € IRP*P

A c RP*

Uxy € Re.
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L Baysian Mixture of Inverses

Dimension reduction space

Proposition
For this model the d.r. space is the span of B = A"1A

YIXZYy|(alA)TX.
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L Baysian Mixture of Inverses

Sampling distribution

Define v; = vy,,;. Sampling distribution for data

Xi | (yi’ﬂa Vi, A, A) ~ N(M+AV,,A)

Vi~ Gy;-
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L Baysian Mixture of Inverses

Categorical response: modeling G,

Y ={1,...,C}, so each category has a distribution

I/i’(y,'zk)NGk, CI].,...,C.
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I—Baysian Mixture of Inverses

Categorical response: modeling G,

Y ={1,...,C}, so each category has a distribution

V;|(y;:k)NGk, C:].,...,C.

v; modeled as a mixture of C distributions Gy, ..., G¢ with a
Dirichlet process model for ech distribution

GC ~ DP(Oéo, Go)
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I—Baysian Mixture of Inverses

Categorical response: modeling G,
Y ={1,...,C}, so each category has a distribution

V;|(y;:k)NGk, C:].,...,C.

v; modeled as a mixture of C distributions Gy, ..., G¢ with a
Dirichlet process model for ech distribution

GC ~ DP(Oéo, Go)

Goto board.
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L Baysian Mixture of Inverses

Likelihood

Lik(data | #) = Lik(data | A, A, vq, ..., Vn, 1)

Lik(data | ) o det(A™Y)2 x
IR T A-1
exp |~ E_l (xi —p—Av) A7 (x; — p — Avy)
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L Baysian Mixture of Inverses

Posterior inference

Given data

Py = Post(6 | data) o< Lik(@ | data) x 7(0).



Geometric perspectives for supervised dimension reduction

L Baysian Mixture of Inverses

Posterior inference

Given data

Py = Post(6 | data) o< Lik(@ | data) x 7(0).

1. Py provides estimate of (un)certainty on 6



Geometric perspectives for supervised dimension reduction
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Posterior inference
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Py = Post(6 | data) o< Lik(@ | data) x 7(0).

1. Py provides estimate of (un)certainty on 6

2. Requires prior on 6
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I—Baysian Mixture of Inverses

Posterior inference

Given data

Py = Post(0 | data) o< Lik(é | data) x 7(6).

1. Py provides estimate of (un)certainty on 6
2. Requires prior on 6

3. Sample from Py ?
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L Baysian Mixture of Inverses

Markov chain Monte Carlo

No closed form for Py.
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L Baysian Mixture of Inverses

Markov chain Monte Carlo

No closed form for Py.

1. Specify Markov transition kernel

K(ota 0t+1)

with stationary distribution Py.
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I—Baysian Mixture of Inverses

Markov chain Monte Carlo

No closed form for Py.

1. Specify Markov transition kernel

K(Htv 01'-1—1)

with stationary distribution Py.

2. Run the Markov chain to obtain 64, ...

01,
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L Baysian Mixture of Inverses

Sampling from the posterior

Inference consists of drawing samples 6,y = (1(2); A(s) A(_t;, ()
from the posterior.
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I—Baysian Mixture of Inverses
Sampling from the posterior

Inference consists of drawing samples 6,y = (1(2); A(s) A(_t:)l, ()
from the posterior.

Define
o = (A Ay o)
by = (1o, AG o)
9(/31 = (e, Ay Ue)
o = (e Ay B
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L Baysian Mixture of Inverses

Gibbs sampling

Conditional probabilities can be used to sample 1, A™1, A

[i(e+1) | (data,&{S) ~ No (data,%ﬁ) ;
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I—Baysian Mixture of Inverses

Gibbs sampling

Conditional probabilities can be used to sample p, A1, A

fi(e+1) | (data,@{g) ~ No <data,9(/g),

— AL . A1
A 1(t+1)|<data,0(/t) ) ~ Ian|shart(data,9(/t) )
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I—Baysian Mixture of Inverses

Gibbs sampling

Conditional probabilities can be used to sample p, A1, A

fi(e+1) | (data,@{ﬁ) ~ No <data,9(/g>,

— AL . A1
A 1(t+1)|<data,0(/t) ) ~ Ian|shart(data,9(/t) )

Aty | (data,ﬁ(/g) ~ No (dataﬂ(/:;) .
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I—Baysian Mixture of Inverses

Gibbs sampling

Conditional probabilities can be used to sample p, A1, A

fi(e+1) | (data,@{ﬁ) ~ No <data,9(/g>,

— AL . A1
A 1(t+1)|<data,0(/t) ) ~ Ian|shart(data,9(/t) )

Aty | (data,H(/S) ~ No (dataﬂ(/:;) .

Sampling v/(4) is more involved.
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L Baysian Mixture of Inverses

Posterior draws from the Grassmann manifold

Given samples (A(;;,A(t))’t":l compute B(;) = A(_t;A(t).
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I—Baysian Mixture of Inverses

Posterior draws from the Grassmann manifold

Given samples (A(}%,A(t))g’:l compute By = A_IA(t).

()

Each B;) is a subspace which is a point in the Grassmann
manifold Q(d7p). There is a Riemannian metric on this manifold.
This has two implications.
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L Baysian Mixture of Inverses

Posterior mean and variance

Given draws (B(;)){L; the posterior mean and variance should be
computed with respect to the Riemannian metric.
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I—Baysian Mixture of Inverses

Posterior mean and variance

Given draws (B()){Z; the posterior mean and variance should be
computed with respect to the Riemannian metric.

Given two subspaces W and U spanned by orthonormal bases W
and V the Karcher mean is

(-=XXTX)'XxNyyx"y)yr = vuxzvT’
© = atan(Y)

distOV,V) = /Tr(©2).
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L Baysian Mixture of Inverses

Posterior mean and variance

The posterior mean subspace

BBayes_arg m|n ZdlSt(B,,B)

Beg (dp)
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L Baysian Mixture of Inverses

Posterior mean and variance

The posterior mean subspace

m
Beg.yes = arg _min Zdist(B,-,B).

Beg(dfp) i=1

Uncertainty

m
var({Bl, cee ,Bm}) = % Zd|5t(817 BBayes)'
i=1
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I—Baysian Mixture of Inverses

Distribution theory on Grassmann manifolds

If B is a linear space of d central normal vectors in IRP with
covariance matrix X the density of Grassmannian distribution %

w.r.t. reference measure 4 is

d% [ det(XTx) \7?
T£(<X>)_<det(XT2—1X)> ’

where (X) = span(X) where X = (xi,...x4).
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L Swiss roll

Swiss roll

Xi = tcos(t), Xo=h, Xsz=tsin(t), Xi. .10~ No(0,1)

where t = 37(1 + 26), 6 ~ Unif(0,1), h ~ Unif(0,1) and

Y =sin(576) + h*> +¢, &~ No(0,0.01).



Geometric perspectives for supervised dimension reduction
L Results on data
L Swiss roll

Pictures
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L Swiss roll

Metric

Projection of the estimated d.r. space B = (Bl, . ,Bd) onto B

1 d . d
=2 lIPebil* = Z TYbi|?
i=1 i=1

Qll—‘
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L Swiss roll

Comparison of algorithms

Accuracy

400
Sample size
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Posterior variance

Boxplot for the Distances

!

0.05 0.1 0.15 0.2 0.25 0.3

0.35

0.4




Geometric perspectives for supervised dimension reduction
L Results on data
L Swiss roll

Error as a function of d

2 s CE

© 5 6 7
number of e.d.. directions

2

3

a5 & 7
number of e.d.. directions
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L Digits

Two classification problems

3vs. 8and 5 vs. 8.
100 training samples from each class.



Geometric perspectives for supervised dimension reduction
L Results on data
L Digits

BMI




Geometric perspectives for supervised dimension reduction
L Results on data
L Digits

3, 5, 8 Classification Problem

Goal

Learn features for predictive model:
> 3vs8
> 5vs 8
» 3and 5 vs 8
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3, 5, 8 Classification problem
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Top features: 3 and 5 vs 8

r
.
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Top features: 5 vs 8
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L Results on data

L Digits
All ten digits
digit Nonlinear Linear
0 0.04(+ 0.01) 0.05 (4 0.01)
1 0.01(% 0.003) | 0.03 (£ 0.01)
2 0.14(+ 0.02) 0.19 (£ 0.02)
3 0.11(% 0.01) 0.17 (£ 0.03)
4 0.13(+ 0.02) 0.13 (£ 0.03)
5 0.12(+ 0.02) 0.21 (£ 0.03)
6 0.04(+ 0.01) | 0.0816 (£ 0.02)
7 0.11(+ 0.01) 0.14 (£ 0.02)
8 0.14(% 0.02) 0.20 (£ 0.03)
9 0.11(+ 0.02) 0.15 (£ 0.02)
average 0.09 0.14

Table: Average classification error rate and standard deviation on the

digits data.
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L Results on data

L Cancer

Cancer classification

n = 38 samples with expression levels for p = 7129 genes or ests
19 samples are Acute Myeloid Leukemia (AML)

19 are Acute Lymphoblastic Leukemia, these fall into two
subclusters — B-cell and T-cell.
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L Cancer

Substructure captured

x 10*
5
gwﬁ*
0 * el
* *
-10
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x 10"



|
Geometric perspectives for supervised dimension reduction

L The end
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