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Supervised dimension reduction

Information and sufficiency

A fundamental idea in statistical thought is to reduce data to
relevant information. This was the paradigm of R.A. Fisher
(beloved Bayesian) and goes back to at least Adcock 1878 and
Edgeworth 1884.

X1, ...,Xn drawn iid form a Gaussian can be reduced to µ,σ2.
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Supervised dimension reduction

Regression

Assume the model

Y = f (X ) + ε, IEε = 0,

with X ∈ X ⊂ Rp and Y ∈ R.

Data – D = {(xi , yi )}n
i=1

iid
∼ ρ(X ,Y ).
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Dimension reduction

If the data lives in a p-dimensional space X ∈ IR
p replace X with

Θ(X ) ∈ IR
d , p $ d .

My belief: physical, biological and social systems are inherently low
dimensional and variation of interest in these systems can be
captured by a low-dimensional submanifold.
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Supervised dimension reduction (SDR)

Given response variables Y1, ...,Yn ∈ IR and explanatory variables
or covariates X1, ...,Xn ∈ X ⊂ Rp

Yi = f (Xi ) + εi , εi
iid
∼ No(0,σ2).
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Supervised dimension reduction

Supervised dimension reduction (SDR)

Given response variables Y1, ...,Yn ∈ IR and explanatory variables
or covariates X1, ...,Xn ∈ X ⊂ Rp

Yi = f (Xi ) + εi , εi
iid
∼ No(0,σ2).

Is there a submanifold S ≡ SY |X such that Y ⊥⊥ X | PS(X ) ?
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Supervised dimension reduction

Visualization of SDR
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Supervised dimension reduction

Linear projections capture nonlinear manifolds

In this talk PS(X ) = BTX where B = (b1, ..., bd ).

Semiparametric model

Yi = f (Xi ) + εi = g(bT
1 Xi , . . . , b

T
d Xi) + εi ,

span B is the dimension reduction (d.r.) subspace.
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Learning gradients

SDR model

Semiparametric model

Yi = f (Xi ) + εi = g(bT
1 Xi , . . . , b

T
d Xi) + εi ,

span B is the dimension reduction (d.r.) subspace.

Assume marginal distribution ρ
X

is concentrated on a manifold
M ⊂ IRp of dimension d ' p.
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Gradients and outer products

Given a smooth function f the gradient is

∇f (x) =
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∂f (x)
∂x1

, ..., ∂f (x)
∂xp

)T
.
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Learning gradients

Gradients and outer products

Given a smooth function f the gradient is

∇f (x) =
(

∂f (x)
∂x1

, ..., ∂f (x)
∂xp

)T
.

Define the gradient outer product matrix Γ

Γij =

∫

X

∂f

∂xi
(x)

∂f

∂xj
(x)dρ

X
(x),

Γ = E[(∇f ) ⊗ (∇f )].
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Learning gradients

GOP captures the d.r. space
Suppose

y = f (X ) + ε = g(bT
1 X , ..., bT

d X ) + ε.

Note that for B = (b1, ..., bd )

λibi = Γbi .

For i = 1, .., d

∂f (x)

∂vi
= vT

i (∇f (x)) *= 0 ⇒ bT
i Γbi *= 0.

If w ⊥ bi for all i then wTΓw = 0.
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Linear case
y = βT x + ε, ε

iid
∼ No(0,σ2).

Ω = cov (E[X |Y ]), Σ
X

= cov (X ), σ2
Y

= var (Y ).
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Learning gradients

Statistical interpretation

Linear case
y = βT x + ε, ε

iid
∼ No(0,σ2).

Ω = cov (E[X |Y ]), Σ
X

= cov (X ), σ2
Y

= var (Y ).

Γ = σ2
Y

(

1 − σ2

σ2
Y

)2

Σ−1
X

ΩΣ−1
X

≈ σ2
Y
Σ−1

X
ΩΣ−1

X
.
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Learning gradients

Statistical interpretation

For smooth f (x)

y = f (x) + ε, ε
iid
∼ No(0,σ2).

Ω = cov (E[X |Y ]) not so clear.
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Nonlinear case

Partition into sections and compute local quantities

X =
I
⋃

i=1

χ
i

Ωi = cov (E[Xχ
i
|Yχ
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Σi = cov (Xχ
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Nonlinear case

Partition into sections and compute local quantities

X =
I
⋃

i=1

χ
i

Ωi = cov (E[Xχ
i
|Yχ

i
])

Σi = cov (Xχ
i
)

σ2
i = var (Yχi

)

mi = ρ
X
(χ

i
).
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Learning gradients

Nonlinear case

Partition into sections and compute local quantities

X =
I
⋃

i=1

χ
i

Ωi = cov (E[Xχ
i
|Yχ

i
])

Σi = cov (Xχ
i
)

σ2
i = var (Yχi

)

mi = ρ
X
(χ

i
).

Γ ≈
I

∑

i=1

mi σ
2
i Σ

−1
i Ωi Σ

−1
i .
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Estimating the gradient

Taylor expansion

yi ≈ f (xi ) ≈ f (xj ) + 〈∇f (xj), xj − xi〉

≈ yj + 〈∇f (xj), xj − xi〉 if xi ≈ xj .
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Learning gradients

Estimating the gradient

Taylor expansion

yi ≈ f (xi ) ≈ f (xj ) + 〈∇f (xj), xj − xi〉

≈ yj + 〈∇f (xj), xj − xi〉 if xi ≈ xj .

Let (f ≈ ∇f the following should be small

∑

i ,j

wij(yi − yj − 〈(f (xj), xj − xi 〉)
2,

wij = 1
sp+2 exp(−‖xi − xj‖2/2s2) enforces xi ≈ xj .
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Learning gradients

Estimating the gradient

The gradient estimate

(fD = arg min
$f ∈Hp





1

n2

n
∑

i ,j=1

wij

(

yi − yj − ((f (xj ))
T (xj − xi)

)2
+ λ‖(f ‖2

K





where ‖(f ‖K is a smoothness penalty, reproducing kernel Hilbert
space norm.
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Learning gradients

Estimating the gradient

The gradient estimate

(fD = arg min
$f ∈Hp





1

n2

n
∑

i ,j=1

wij

(

yi − yj − ((f (xj ))
T (xj − xi)

)2
+ λ‖(f ‖2

K





where ‖(f ‖K is a smoothness penalty, reproducing kernel Hilbert
space norm.
Goto board.
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Learning gradients

Computational efficiency

The computation requires fewer than n2 parameters and is O(n6)
time and O(pn) memory

(fD(x) =
n

∑

i=1

ci ,DK (xi , x)

cD = (c1,D , . . . , cn,D)T ∈ Rnp.
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Learning gradients

Computational efficiency

The computation requires fewer than n2 parameters and is O(n6)
time and O(pn) memory

(fD(x) =
n

∑

i=1

ci ,DK (xi , x)

cD = (c1,D , . . . , cn,D)T ∈ Rnp.

Define gram matrix K where Kij = K (xi , xj)

Γ̂ = cDKcT
D .
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Learning gradients

Estimates on manifolds

Mrginal distribution ρ
X

is concentrated on a compact Riemannian manifold M ∈ IR
d with isometric embedding

ϕ : M → R
p and metric dM and dµ is the uniform measure on M.

Assume regular distribution

(i) The density ν(x) =
dρ

X
(x)

dµ
exists and is Hölder continuous (c1 > 0 and 0 < θ ≤ 1)

|ν(x) − ν(u)| ≤ c1 d
θ
M(x, u) ∀x, u ∈ M.

(ii) The measure along the boundary is small: (c2 > 0)

ρ
M

` ˘

x ∈ M : dM(x, ∂M) ≤ t
¯ ´

≤ c2 t ∀t > 0.
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Learning gradients

Convergence to gradient on manifold

Theorem
Under above regularity conditions on ρ

X
and f ∈ C 2(M), with

probability 1 − δ

‖(dϕ)∗(fD − ∇Mf ‖2
L2

ρM

≤ C log

(

1

δ

)

(

n−
1
d

)

.

where (dϕ)∗ (projection onto tangent space) is the dual of the
map dϕ.
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Definition
Single Task Notation nt samples (xi , yi )
xi ∈ Rd

yi ∈ {−1, 1} for classification
Assume to be working in d $ nt paradigm.



Geometric perspectives for supervised dimension reduction

Learning gradients

Multi-task learning

Definition
Single Task Notation nt samples (xi , yi )
xi ∈ Rd

yi ∈ {−1, 1} for classification
Assume to be working in d $ nt paradigm.

Definition
Multi-task Learning (MTL) Formulation Given T tasks with
t ∈ {1, . . . ,T}

Ft(x) = f0(x) + ft(x) + ε, ε
iid
! No(0,σ2).
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T
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This provides us with T + 1 matrices

1. Γ̂0 is the GOP estimate across all the tasks
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Learning gradients

Multi-task gradient learning

Estimate not just the functions

{f0, f1, ..., fT },

but the gradients as well

{(f0,∇f0), (ft ,∇ft)
T
t=1}.

This provides us with T + 1 matrices

1. Γ̂0 is the GOP estimate across all the tasks

2. Γ̂1, . . . , Γ̂T are the task specific GOP estimates.
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Algorithmic view of PCA:

1. Given X = (X1, ....,Xn) a p × n matrix construct

Σ̂ = (X − X̄ )(X − X̄ )T
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Baysian Mixture of Inverses

Principal components analysis (PCA)

Algorithmic view of PCA:

1. Given X = (X1, ....,Xn) a p × n matrix construct

Σ̂ = (X − X̄ )(X − X̄ )T

2. Eigen-decomposition of Σ̂

λivi = Σ̂vi .
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Baysian Mixture of Inverses

Probabilistic PCA

X ∈ IR
p is charterized by a multivariate normal

X ∼ No(µ + Aν,∆),

ν ∼ No(0, Id )

µ ∈ IR
p

A ∈ IR
p×d

∆ ∈ IR
p×p

ν ∈ IR
d .
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Baysian Mixture of Inverses

Probabilistic PCA

X ∈ IR
p is charterized by a multivariate normal

X ∼ No(µ + Aν,∆),

ν ∼ No(0, Id )

µ ∈ IR
p

A ∈ IR
p×d

∆ ∈ IR
p×p

ν ∈ IR
d .

ν is a latent variable
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Baysian Mixture of Inverses

SDR model

Semiparametric model

Yi = f (Xi ) + εi = g(bT
1 Xi , . . . , b

T
d Xi) + εi ,

span B is the dimension reduction (d.r.) subspace.
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Baysian Mixture of Inverses

Principal fitted components (PFC)

Define Xy ≡ (X | Y = y) and specify multivariate normal
distribution

Xy ∼ No(µy ,∆),

µy = µ + Aνy

µ ∈ IR
p

A ∈ IRp×d

νy ∈ IRd .



Geometric perspectives for supervised dimension reduction

Baysian Mixture of Inverses

Principal fitted components (PFC)

Define Xy ≡ (X | Y = y) and specify multivariate normal
distribution

Xy ∼ No(µy ,∆),

µy = µ + Aνy

µ ∈ IR
p

A ∈ IRp×d

νy ∈ IRd .

B = ∆−1A.
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Baysian Mixture of Inverses

Principal fitted components (PFC)

Define Xy ≡ (X | Y = y) and specify multivariate normal
distribution

Xy ∼ No(µy ,∆),

µy = µ + Aνy

µ ∈ IR
p

A ∈ IRp×d

νy ∈ IRd .

B = ∆−1A.

Captures global linear predictive structure. Does not generalize to
manifolds.
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Baysian Mixture of Inverses

Mixture models and localization

A driving idea in manifold learning is that manifolds are locally
Euclidean.

A driving idea in probabilistic modeling is that mixture models are
flexible and can capture ”nonparametric” distributions.

Mixture models can capture local nonlinear predictive manifold
structure.
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Baysian Mixture of Inverses

Model specification

Xy ∼ No(µyx ,∆)

µyx = µ + Aνyx

νyx ∼ Gy

Gy : density indexed by y having multiple clusters
µ ∈ IR

p

ε ∼ N(0,∆) with ∆ ∈ IR
p×p

A ∈ IR
p×d

νxy ∈ IR
d .
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Baysian Mixture of Inverses

Dimension reduction space

Proposition
For this model the d.r. space is the span of B = ∆−1A

Y | X
d
= Y | (∆−1A)TX .
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Baysian Mixture of Inverses

Sampling distribution

Define νi ≡ νyi xi
. Sampling distribution for data

xi | (yi , µ, νi ,A,∆) ∼ N(µ + Aνi ,∆)

νi ∼ Gyi
.
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Categorical response: modeling Gy

Y = {1, ...,C}, so each category has a distribution

νi | (yi = k) ∼ Gk , c = 1, ...,C .
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Categorical response: modeling Gy

Y = {1, ...,C}, so each category has a distribution

νi | (yi = k) ∼ Gk , c = 1, ...,C .

νi modeled as a mixture of C distributions G1, ...,GC with a
Dirichlet process model for ech distribution

Gc ∼ DP(α0,G0).
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Baysian Mixture of Inverses

Categorical response: modeling Gy

Y = {1, ...,C}, so each category has a distribution

νi | (yi = k) ∼ Gk , c = 1, ...,C .

νi modeled as a mixture of C distributions G1, ...,GC with a
Dirichlet process model for ech distribution

Gc ∼ DP(α0,G0).

Goto board.
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Baysian Mixture of Inverses

Likelihood

Lik(data | θ) ≡ Lik(data | A,∆, ν1, ..., νn, µ)

Lik(data | θ) ∝ det(∆−1)
n
2 ×

exp

[

−
1

2

n
∑

i=1

(xi − µ − Aνi)
T∆−1(xi − µ − Aνi)

]

.
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Pθ ≡ Post(θ | data) ∝ Lik(θ | data) × π(θ).
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Baysian Mixture of Inverses

Posterior inference

Given data

Pθ ≡ Post(θ | data) ∝ Lik(θ | data) × π(θ).

1. Pθ provides estimate of (un)certainty on θ

2. Requires prior on θ

3. Sample from Pθ ?
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No closed form for Pθ.
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K (θt , θt+1)
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Baysian Mixture of Inverses

Markov chain Monte Carlo

No closed form for Pθ.

1. Specify Markov transition kernel

K (θt , θt+1)

with stationary distribution Pθ.

2. Run the Markov chain to obtain θ1, ..., θT .
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Baysian Mixture of Inverses

Sampling from the posterior

Inference consists of drawing samples θ(t) = (µ(t),A(t),∆
−1
(t) , ν(t))

from the posterior.
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Baysian Mixture of Inverses

Sampling from the posterior

Inference consists of drawing samples θ(t) = (µ(t),A(t),∆
−1
(t) , ν(t))

from the posterior.

Define

θ/µ
(t) ≡ (A(t),∆

−1
(t) , ν(t))

θ/A
(t) ≡ (µ(t),∆

−1
(t) , ν(t))

θ/∆−1

(t) ≡ (µ(t),A(t), ν(t))

θ/ν
(t) ≡ (µ(t),A(t),∆

−1
(t)).
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Baysian Mixture of Inverses

Gibbs sampling

Conditional probabilities can be used to sample µ,∆−1,A

µ(t+1) |
(

data, θ/µ
(t)

)

∼ No
(

data, θ/µ
(t)

)

,
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Baysian Mixture of Inverses

Gibbs sampling

Conditional probabilities can be used to sample µ,∆−1,A

µ(t+1) |
(

data, θ/µ
(t)

)

∼ No
(

data, θ/µ
(t)

)

,

∆−1
(t+1) |

(

data, θ/∆−1

(t)

)

∼ InvWishart
(

data, θ/∆−1

(t)

)
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Baysian Mixture of Inverses

Gibbs sampling

Conditional probabilities can be used to sample µ,∆−1,A

µ(t+1) |
(

data, θ/µ
(t)

)

∼ No
(

data, θ/µ
(t)

)

,

∆−1
(t+1) |

(

data, θ/∆−1

(t)

)

∼ InvWishart
(

data, θ/∆−1

(t)

)

A(t+1) |
(

data, θ/A
(t)

)

∼ No
(

data.θ/A
(t)

)

.



Geometric perspectives for supervised dimension reduction

Baysian Mixture of Inverses

Gibbs sampling

Conditional probabilities can be used to sample µ,∆−1,A

µ(t+1) |
(

data, θ/µ
(t)

)

∼ No
(

data, θ/µ
(t)

)

,

∆−1
(t+1) |

(

data, θ/∆−1

(t)

)

∼ InvWishart
(

data, θ/∆−1

(t)

)

A(t+1) |
(

data, θ/A
(t)

)

∼ No
(

data.θ/A
(t)

)

.

Sampling ν(t) is more involved.
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Posterior draws from the Grassmann manifold

Given samples (∆−1
(t) ,A(t))

m
t=1 compute B(t) = ∆−1

(t)A(t).
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Baysian Mixture of Inverses

Posterior draws from the Grassmann manifold

Given samples (∆−1
(t) ,A(t))

m
t=1 compute B(t) = ∆−1

(t)A(t).

Each B(t) is a subspace which is a point in the Grassmann
manifold G(d,p). There is a Riemannian metric on this manifold.
This has two implications.
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Baysian Mixture of Inverses

Posterior mean and variance

Given draws (B(t))
m
t=1 the posterior mean and variance should be

computed with respect to the Riemannian metric.
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Baysian Mixture of Inverses

Posterior mean and variance

Given draws (B(t))
m
t=1 the posterior mean and variance should be

computed with respect to the Riemannian metric.

Given two subspaces W and U spanned by orthonormal bases W
and V the Karcher mean is

(I − X (XTX )−1XT )Y (XTY )−1 = UΣV T

Θ = atan(Σ)

dist(W,V) =
√

Tr(Θ2).
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Baysian Mixture of Inverses

Posterior mean and variance

The posterior mean subspace

BBayes = arg min
B∈G(d,p)

m
∑

i=1

dist(Bi ,B).
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Baysian Mixture of Inverses

Posterior mean and variance

The posterior mean subspace

BBayes = arg min
B∈G(d,p)

m
∑

i=1

dist(Bi ,B).

Uncertainty

var({B1, · · · ,Bm}) =
1

m

m
∑

i=1

dist(Bi ,BBayes).
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Baysian Mixture of Inverses

Distribution theory on Grassmann manifolds

If B is a linear space of d central normal vectors in IR
p with

covariance matrix Σ the density of Grassmannian distribution GΣ

w.r.t. reference measure GI is

dGΣ

dGI

(〈X 〉) =

(

det(XTX )

det(XTΣ−1X )

)d/2

,

where 〈X 〉 ≡ span(X ) where X = (x1, ...xd ).
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Results on data

Swiss roll

Swiss roll

X1 = t cos(t), X2 = h, X3 = t sin(t), X4,...,10
iid
∼ No(0, 1)

where t = 3π
2 (1 + 2θ), θ ∼ Unif(0, 1), h ∼ Unif(0, 1) and

Y = sin(5πθ) + h2 + ε, ε ∼ No(0, 0.01).
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Swiss roll

Pictures
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Results on data

Swiss roll

Metric

Projection of the estimated d.r. space B̂ = (b̂1, · · · , b̂d) onto B

1

d

d
∑

i=1

||PB b̂i ||
2 =

1

d

d
∑

i=1

||(BBT )b̂i ||
2
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Results on data

Swiss roll

Comparison of algorithms
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Results on data

Swiss roll

Posterior variance
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Results on data

Swiss roll

Error as a function of d
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Results on data

Digits

Digits
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Results on data

Digits

Two classification problems

3 vs. 8 and 5 vs. 8.
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Results on data

Digits

Two classification problems

3 vs. 8 and 5 vs. 8.
100 training samples from each class.
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Results on data

Digits

BMI
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Digits

3, 5, 8 Classification Problem

Goal
Learn features for predictive model:

! 3 vs 8

! 5 vs 8

! 3 and 5 vs 8
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Results on data

Digits

3, 5, 8 Classification problem
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Results on data

Digits

Top features: 3 and 5 vs 8
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Digits

Top features: 3 vs 8
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Results on data

Digits

Top features: 5 vs 8



Geometric perspectives for supervised dimension reduction

Results on data

Digits

All ten digits
digit Nonlinear Linear

0 0.04(± 0.01) 0.05 (± 0.01)
1 0.01(± 0.003) 0.03 (± 0.01)
2 0.14(± 0.02) 0.19 (± 0.02)
3 0.11(± 0.01) 0.17 (± 0.03)
4 0.13(± 0.02) 0.13 (± 0.03)
5 0.12(± 0.02) 0.21 (± 0.03)
6 0.04(± 0.01) 0.0816 (± 0.02)
7 0.11(± 0.01) 0.14 (± 0.02)
8 0.14(± 0.02) 0.20 (± 0.03)
9 0.11(± 0.02) 0.15 (± 0.02)

average 0.09 0.14

Table: Average classification error rate and standard deviation on the
digits data.
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Results on data

Cancer

Cancer classification

n = 38 samples with expression levels for p = 7129 genes or ests
19 samples are Acute Myeloid Leukemia (AML)
19 are Acute Lymphoblastic Leukemia, these fall into two
subclusters – B-cell and T-cell.
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Results on data

Cancer

Substructure captured
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