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Scalar Case

• function estimation from samples

• kernel models

reducing the computational load of computing the kernel). Due to the considerable amount
of parameters involved in this quasi-parametric form of the smoothing kernel functions,
the authors propose a parametric form for this kernel and estimate its parameters using
restricted maximum likelihood. The inversion of the covariance matrix is done computing
simpler covariances between variables with high amount of data and variables having less
data.

An alternative for reducing computational complexity for training and prediction was
proposed in ? assuming conditional independence between the outputs given the latent
functions and integrating out the prior Gaussian process.

Functional data

3. Regularized Kernel Methods for Vector Fields Estimation

In this section we describe recent approaches to multiple output learning based on regu-
larized kernel methods, and discuss connections with Bayesian techniques presented in the
previous section.

We start recalling briefly the basic ideas of regularization in the scalar case.

3.1 Regularization

In this section we briefly recall the basic ideas behind regularized methods, see WAHABA
POGGIOEV POGGIOGIR. In the classical scalar setting we are looking for a function

f : Rd → R

from input output pairs (xi, yi)n
i=1. The basic assumption behind kernel methods is to

restrict the class of possible functions to reproducing kernel Hilbert spaces. In a nutshell
these are Hilbert spaces H of functions f : X → ", such that there exists a function
k : X × X → " with the following properties

1. for every x, k(x,x′) as a function of x′ belongs to H.

2. k has the reproducing property

〈f(·), k(·,x)〉H = f(x),

where 〈·, ·〉H is the inner product in H)

The choice of the kernel corresponds to the choice of representation (parameterization)for
the function of interest, in fact functions in the RKHS can be written as (possibly infinite)
linear combination

f =
∑

K(x, ·)ci.

Moreover, the norm in a RKHS can often be seen as natural measure of complexity for a
function in H. For examples : SOBOLEV+ MARGIN.
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f =
∑

j

K(xj , ·)cj
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Kernels and Regularization

Tikhonov Regularization

RKHS: Definitions

In this setting a classical way to build learning rules is to use Tikhonov regularization
(regularization networks) which is based on to the minimization problem

min
f∈H

{ 1
n

n∑

i=1

(yi − f(xi))2 + λ‖f‖2H}.

The first term is the empirical error and measure the fit to the data, whereas the second
term is a smoothness term that prevent the solution to become too complex and avoid
overfitting the data. The parameter λ, called regularization parameter, should be chosen
to balance the tradeoff between fitness and smoothness.

A crucial property of regularization networks is that the solution is given by a finite
combination of the kernel function evaluated at the training set points,

fλ
z (·) =

n∑

i=1

ciK(xi, ·), ci ∈ R ∀i = 1, . . . , n (12)

where the coefficients c = (c1, . . . , cn), satisfy

(K + λnI)c = y, (13)

with Kij = K(xi, xj) and y = (y1, . . . , yn). The final estimator fz is determined by a
parameter choice λn = λ(n, z), so that fz = fλ

z .

From the above discussion is clear that a every kernel induces a regularizer (via the
norm in the corresponding RKHS). Interestingly one can also take the opposite approach
and define kernels by choosing appropriate regularizers- see the following remark

Remark 2 for example REF.

As we discuss in the next section this point will be useful in the multi-output case.

3.2 Regularization for Multiple Output Learning

In this section we describe how the (Tikhonov) regularization approach translates to the
multiple ouput setting. We interested into recovering a function, but this time the function
is vector valued

f : %d → %T .

Similarly to the scalar case the idea is to restrict the search for a solution to a reproducing
kernel Hilbert spaces The definition of RKHS for vector valued functions parallels the one
in the scalar, with the main difference that the reproducing kernel is now matrix valued.

A vector valued RKHS is a Hilbert space H of functions f : X → %T , such that there
exists a function Γ : X × X → %T×T with the following properties , let c ∈ %T ,

1. for every x, γ(x,x′)c, as a function of x′ belongs to H.
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Hilbert space of functions H, 〈·, ·〉H such that ∃ k : Rd ×Rd → R and

k(x, ·) ∈ H

and
f(x) = 〈f, k(·, x)〉H
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Kernel Design

• feature map

• regularizers

K(x, s) = 〈Φ(x),Φ(s)〉

An Inverse Problem Perspective on Learning Theory

Feature Map

Φ : X → F

Hyperplanes in the feature space

f (x) = 〈β,Φ(x)〉

are non linear functions in the original space.

J(f) = ‖f‖2
H
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Multiple Outputs

• vector functions

• samples

• kernel models

2. Γ has the reproducing property

〈f(·),Γ(·,x)c〉H = f(x),

where 〈·, ·〉H is the inner product in H)

Again, the choice of the kernel corresponds to the choice of representation (parameteriza-
tion) for the function of interest, in fact functions in the RKHS can be written as a (possibly
infinite) linear combination

f =
∑

Γ(x, ·)ci.

Once a kernel is fixed we can advocate regularization to estimate the function of interest.
Given T training set (xT

i , yT
i )nT

i=1 (one for each output), Tikhonov regularization corresponds
to

min
f=(f1,...,fT )∈H

{
T∑

j=1

1
nT

n∑

i=1

(yj
i − f j(xj

i ))
2 + λ‖f‖2

H}.

Once again the representer theorem shows that regularized solution can be written as

fλ
z (·) =

n∑

i=1

Γ(·, xi)ci, ci ∈ RT ∀i = 1, . . . , n. (14)

The coefficients can be concatenated in a nT vector C = (c1, . . . , cn) and satisfy

(Γ + λnI)C = Y (15)

where Y is the nT vector where we concatenated the outputs (y1, . . . , yn) and the kernel
matrix Γ is a T × T block matrix, where each block is a n× n scalar matrix, so that Γ is a
nT × nT scalar matrix.

We will discuss computational aspects in the following, but we devote the next section
to the choice of the matrix valued kernel Γ.

3.3 A priori Kernel for Multi-output Regularization

In this section we describe an approach where kernels are designes according to some prior
knowl

The simplest situation is that of considering From the above expression it is clear that
the solution of the problem is equivalent to solving T independent scalar problems. Within
the framework of vector valued kernels, assumption (21) corresponds to a special choice of
a matrix valued kernel, namely a kernel of the form

Γ(x, x′) = diag(K1(x, x′), . . . ,KT (x, x′)).

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
In the following we are interested in the theoretical and computational properties of a

class of vector valued kernel methods, that is methods where the hypotheses space is chosen
to be a reproducing kernel Hilbert space (RKHS). This motivates recalling the basic theory
of vector valued RKHS.
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f =
∑

j

K(xj , ·)cj cj ∈ RT

f : Rd → RT
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RKHS
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1
nT

n∑

i=1

(yj
i − f j(xj

i ))
2 + λ‖f‖2

H}.
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Tikhonov Regularization

RKHS: Definitions
Hilbert space of functions H, 〈·, ·〉H such that ∃ K : Rd × Rd → RT×T and

for c ∈ RT

K(x, ·)c ∈ H

and
f(x) = 〈f, K(·, x)c〉H
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Which Kernels?
Component wise definition

A general class of kernels

K(x, x′) =
∑

r

kr(x, x′)Ar

K : (Rd, T )× (Rd, T )→ R K((x, t), (x′, t′))
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Kernels and Regularizers
Consider

K(x, x′) = k(x, x′)A

Then

‖f‖2
H =

∑

j,i

A†
j,i〈f

j , f i〉k

with f = (f1, · · · , fT )
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Example: Mixed Effect

where f c is the mean of the components in cluster c and ε1, ε2 are parameters balancing
the two terms. Straightforward calculations show that the previous regularizer can be
rewritten as J(f) =

∑
lq Glq < f l, f q >K , where Glq = ε1δlq + (ε2 − ε1)Mlq. Therefore the

corresponding matrix valued kernel is Γ(x, x′) = K(x, x′)G†.

Common similarity. The simple matrix valued kernel (25), that imposes a common
similarity between the output components, can be viewed as a particular regularizer. In
fact a simple calculation shows that the corresponding regularizer is

J(f) = Aω



Bω

T∑

"=1

||f "||2K + ωT
T∑

"=1

||f " − 1
T

T∑

q=1

f q||2K



 (32)

where Aω = 1
2(1−ω)(1−ω+ωT ) and Bω = (2− 2ω + ωT ). It is composed of two terms: the

first is a standard regularization term on the norm of each component of the estimator;
the second forces each f " to be close to the mean estimator across the components, f =
1
T

∑T
q=1 f q.

Divergence free and curl free fields. The following two matrix valued kernels apply
only for vector fields whose input and the output spaces have the same dimensions. In (?)
the problem of reconstructing divergence-free or curl-free vector fields is tackled by means
of the SVR method, with ad-hoc matrix valued kernels based on matrix valued radial
basis functions. These kernels induce a similarity between the vector field components
that depend on the input points, and therefore cannot be reduced to the form Γ(x, x′) =
K(x, x′)A. The divergence-free kernel is

Γdf (x, x′) =
1
σ2

e−
||x−y||2

2σ2 Ax,x′ (33)

where

Ax,x′ =

((
x− x′

σ

)(
x− x′

σ

)T

+
(

(T − 1)− ||x− x′||2

σ2

)
I

)

and the curl-free is

Γcf (x, x′) =
1
σ2

e−
||x−x′||2

2σ2

(
I−

(
x− x′

σ

) (
x− x′

σ

)T
)

. (34)

It is possible to consider a convex linear combination of these two kernels to obtain a kernel
for learning any kind of vector field, while at the same time allowing to reconstruct the
divergence-free and curl-free parts separately (see (?) and the experiments in Sect.?? for
more details).

Product of scalar kernels and operators. Another example of a class of kernels that
cannot be decomposed into the simple form Γ(x.x′) = K(x, x′)A, is given by kernels defined
as Γ(x, x′) =

∑m
i=1 Ki(x, x′)Bi, with m > 1 and Bi positive semi-definite matrices (??).

Contrary to the case m = 1, it is impossible to reduce the kernel Γ to a diagonal one, unless
all the matrices Bj can be transformed in diagonal form by the same transformation.

23

A straightforward example of matrix valued kernel was proposed in (?). This kernel
imposes a common similarity structure between all the output components and the strength
of the similarity is controlled by a parameter ω,

Γω(x, x′) = K(x, x′)(ω1 + (1− ω)I) (25)

where 1 is the T × T matrix whose entries are all equal to 1, I is the T -dimensional
identity matrix and K is a scalar kernel on the input space X . Setting ω = 0 corresponds
to treating all components independently and the possible similarity among them is not
exploited. Conversely, ω = 1 is equivalent to assuming that all components are identical
and are explained by the same function.

A more general class of matrix valued kernels, which includes the aforementioned kernel
as a special case, is composed of kernels of the form:

Γ(x, x′) = K(x, x′)A (26)

where K is a scalar kernel and A a positive semidefinite T ×T matrix that encodes how the
outputs are related. This class of kernels allows to decouple the role played by input and
output spaces. The choice of the kernel K depends on the desired shape of the function with
respect to the input variables, while the choice of the matrix A depends on the relations
among the outputs. This information can be available in the form of a prior knowledge on
the problem at hand or can be potentially estimated from data.

The role of A can be better understood by recalling that any vector valued function
belonging to a RKHS can be expressed as f(x) =

∑
i Γ(x, xi)ci =

∑
i K(x, xi)Aci with

ci ∈ RT , so that the "− th component is

f "(x) =
∑

i

T∑

t=1

K(x, xi)A"tc
t
i,

with ct
i ∈ R. Each component is thus a different linear combination of the same coefficients

{ci}n
i=1 and depends on the corresponding row of the matrix A. If A is the T -dimension

identity matrix I, the linear combinations depend on the corresponding components of the
coefficients ci and therefore each component f " is independent to the others. The norm
of the vector valued function can also be expressed in terms of the coefficients ci and the
matrix A,

||f ||2Γ = < f, f >Γ=
∑

ij

< ci,Γ(xi, xj)cj >Y

=
∑

ij

< ci, K(xi, xj)Acj >Y

=
∑

ij

∑

"q

K(xi, xj)c"
iA"qc

q
j .

Now for the considered kernels, the similarity between the components can be evaluated by
their pairwise scalar products:

< f ", f q >K=
∑

ij

∑

ts

K(xi, xj)A"tc
t
iAqsc

s
j . (27)

21
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Example: Clustering Outputs

Given the simple calculations above, we immediately have the following proposition – see
(?).

Proposition 5 Let Γ be a product kernel of the form in (26). Then the norm of any
function in the corresponding RKHS can be written as

||f ||2Γ =
T∑

!,q=1

A†
!q < f !, f q >K , (28)

where A† is the pseudoinverse of A.

The above result immediately leads to a RKHS interpretation of many regularizers. We
illustrate this recalling some examples.

Graph regularization. Following (??), we can define a regularizer that, in addition to
a standard regularization on the single components, forces stronger or weaker similarity
between them through a T × T positive weight matrix M ,

J(f) =
1
2

T∑

!,q=1

||f ! − f q||2KM!q +
T∑

!=1

||f !||2KM!!. (29)

The regularizer J(f) can be rewritten as:

T∑

!,q=1

(
||f !||2KM!q− < f !, f q >K M!q

)
+

T∑

!=1

||f !||2KM!! =

T∑

!=1

||f !||2K
T∑

q=1

(1 + δ!q)M!q −
T∑

!,q=1

< f !, f q >K M!q =

T∑

!,q=1

< f !, f q >K L!q (30)

where L = D −M , with D!q = δ!q

(∑T
h=1 M!h + M!q

)
. Eq. (30) is of the form defined in

Prop. 5, therefore the resulting kernel will be Γ(x, x′) = K(x, x′)L†, with K(x, x′) a scalar
kernel to be chosen according to the problem at hand.

Output components clustering. Another example of regularizer, proposed in (?), is
based on the idea of grouping the components into r clusters and enforcing the components
in each cluster to be similar. Following (?), let us define the matrix E as the T × r matrix,
where r is the number of clusters, such that Elc = 1 if the component l belongs to cluster
c and 0 otherwise. Then we can compute the T × T matrix M = E(ET E)−1ET such that
Mlq = 1

mc
if components l and q belong to the same cluster c, and mc is its cardinality,

Mlq = 0 otherwise. Furthermore let I(c) be the index set of the components that belong to
cluster c. Then we can consider the following regularizer that forces components belonging
to the same cluster to be close to each other:

J(f) = ε1

r∑

c=1

∑

l∈I(c)

||f l − f c||2K + ε2

r∑

c=1

mc||f c||2K , (31)
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K(x, x′) = k(x, x′)G†

where f c is the mean of the components in cluster c and ε1, ε2 are parameters balancing
the two terms. Straightforward calculations show that the previous regularizer can be
rewritten as J(f) =

∑
lq Glq < f l, f q >K , where Glq = ε1δlq + (ε2 − ε1)Mlq. Therefore the

corresponding matrix valued kernel is Γ(x, x′) = K(x, x′)G†.

Common similarity. The simple matrix valued kernel (25), that imposes a common
similarity between the output components, can be viewed as a particular regularizer. In
fact a simple calculation shows that the corresponding regularizer is

J(f) = Aω



Bω

T∑

"=1

||f "||2K + ωT
T∑

"=1

||f " − 1
T

T∑

q=1

f q||2K



 (32)

where Aω = 1
2(1−ω)(1−ω+ωT ) and Bω = (2− 2ω + ωT ). It is composed of two terms: the

first is a standard regularization term on the norm of each component of the estimator;
the second forces each f " to be close to the mean estimator across the components, f =
1
T

∑T
q=1 f q.

Divergence free and curl free fields. The following two matrix valued kernels apply
only for vector fields whose input and the output spaces have the same dimensions. In (?)
the problem of reconstructing divergence-free or curl-free vector fields is tackled by means
of the SVR method, with ad-hoc matrix valued kernels based on matrix valued radial
basis functions. These kernels induce a similarity between the vector field components
that depend on the input points, and therefore cannot be reduced to the form Γ(x, x′) =
K(x, x′)A. The divergence-free kernel is

Γdf (x, x′) =
1
σ2

e−
||x−y||2

2σ2 Ax,x′ (33)

where

Ax,x′ =

((
x− x′

σ

)(
x− x′

σ

)T

+
(

(T − 1)− ||x− x′||2

σ2

)
I

)

and the curl-free is

Γcf (x, x′) =
1
σ2

e−
||x−x′||2

2σ2

(
I−

(
x− x′

σ

) (
x− x′

σ

)T
)

. (34)

It is possible to consider a convex linear combination of these two kernels to obtain a kernel
for learning any kind of vector field, while at the same time allowing to reconstruct the
divergence-free and curl-free parts separately (see (?) and the experiments in Sect.?? for
more details).

Product of scalar kernels and operators. Another example of a class of kernels that
cannot be decomposed into the simple form Γ(x.x′) = K(x, x′)A, is given by kernels defined
as Γ(x, x′) =

∑m
i=1 Ki(x, x′)Bi, with m > 1 and Bi positive semi-definite matrices (??).

Contrary to the case m = 1, it is impossible to reduce the kernel Γ to a diagonal one, unless
all the matrices Bj can be transformed in diagonal form by the same transformation.

23

M specifies the clusters

Saturday, December 12, 2009



Example: Graph

Given the simple calculations above, we immediately have the following proposition – see
(?).

Proposition 5 Let Γ be a product kernel of the form in (26). Then the norm of any
function in the corresponding RKHS can be written as

||f ||2Γ =
T∑

!,q=1

A†
!q < f !, f q >K , (28)

where A† is the pseudoinverse of A.

The above result immediately leads to a RKHS interpretation of many regularizers. We
illustrate this recalling some examples.

Graph regularization. Following (??), we can define a regularizer that, in addition to
a standard regularization on the single components, forces stronger or weaker similarity
between them through a T × T positive weight matrix M ,

J(f) =
1
2

T∑

!,q=1

||f ! − f q||2KM!q +
T∑

!=1

||f !||2KM!!. (29)

The regularizer J(f) can be rewritten as:

T∑

!,q=1

(
||f !||2KM!q− < f !, f q >K M!q

)
+

T∑

!=1

||f !||2KM!! =

T∑

!=1

||f !||2K
T∑

q=1

(1 + δ!q)M!q −
T∑

!,q=1

< f !, f q >K M!q =

T∑

!,q=1

< f !, f q >K L!q (30)

where L = D −M , with D!q = δ!q

(∑T
h=1 M!h + M!q

)
. Eq. (30) is of the form defined in

Prop. 5, therefore the resulting kernel will be Γ(x, x′) = K(x, x′)L†, with K(x, x′) a scalar
kernel to be chosen according to the problem at hand.

Output components clustering. Another example of regularizer, proposed in (?), is
based on the idea of grouping the components into r clusters and enforcing the components
in each cluster to be similar. Following (?), let us define the matrix E as the T × r matrix,
where r is the number of clusters, such that Elc = 1 if the component l belongs to cluster
c and 0 otherwise. Then we can compute the T × T matrix M = E(ET E)−1ET such that
Mlq = 1

mc
if components l and q belong to the same cluster c, and mc is its cardinality,

Mlq = 0 otherwise. Furthermore let I(c) be the index set of the components that belong to
cluster c. Then we can consider the following regularizer that forces components belonging
to the same cluster to be close to each other:

J(f) = ε1

r∑

c=1

∑

l∈I(c)

||f l − f c||2K + ε2

r∑

c=1

mc||f c||2K , (31)
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Given the simple calculations above, we immediately have the following proposition – see
(?).
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)
. Eq. (30) is of the form defined in

Prop. 5, therefore the resulting kernel will be Γ(x, x′) = K(x, x′)L†, with K(x, x′) a scalar
kernel to be chosen according to the problem at hand.

Output components clustering. Another example of regularizer, proposed in (?), is
based on the idea of grouping the components into r clusters and enforcing the components
in each cluster to be similar. Following (?), let us define the matrix E as the T × r matrix,
where r is the number of clusters, such that Elc = 1 if the component l belongs to cluster
c and 0 otherwise. Then we can compute the T × T matrix M = E(ET E)−1ET such that
Mlq = 1

mc
if components l and q belong to the same cluster c, and mc is its cardinality,

Mlq = 0 otherwise. Furthermore let I(c) be the index set of the components that belong to
cluster c. Then we can consider the following regularizer that forces components belonging
to the same cluster to be close to each other:

J(f) = ε1

r∑

c=1

∑

l∈I(c)

||f l − f c||2K + ε2

r∑

c=1

mc||f c||2K , (31)

22

K(x, x′) = k(x, x′)L†

M is an adjacency matrix among the tasks
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Inference and Computations
Least Squares and Tikhonov

Kernel Matrix is (TnT )× (TnT )
c, Y are TnT

Computing the solution for N different 
regularization parameter is expensive 

c = (K + λnI)−1Y

O(N(TnT )3)
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Ill-posed Problems
ill-Posed Problems

Well-posedness in the sense of Hadamard
! A solution exists
! The solution is unique
! The solution depends continuously on the data

Problems that are not well-posed are termed ill-posed.

ill-Posed Problems

Well-posedness in the sense of Hadamard
! A solution exists
! The solution is unique
! The solution depends continuously on the data

Problems that are not well-posed are termed ill-posed.

Ill posed Inverse Problems in Three Slides (cont.)

Ill-posed Problem
solution does not exist or is not unique or does not depend
continuously on the data:

A

H K

g

Ill posed Inverse Problems in Three Slides

Ideal Problem

Af = g

! A : H→ K linear, bounded operator.
! H,K Hilbert spaces

f † minimal norm solution of ‖Af − g‖2.

Real Problem
Given gδ with ‖g − gδ‖ ≤ δ find fδ such that

∥∥fδ − f †
∥∥

is small.
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Regularization and Filtering

Spectral Filtering

c =
∑

i

1
σi + λn

〈ui, Y 〉ui

c =
∑

i

Gλ(σi)〈ui, Y 〉ui
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Regularization and Filtering

small eigenvalueslarge eigenvalues

Low pass filter

j

Gλ(σj)〈Y, uj〉1
σ j

〈Y, uj〉
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Classical Examples

• Tikhonov Regularization

Gλ(σ) =
1

σ + λ
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Other Examples
Many other Examples of Filters (only some 
known in machine learning) 

Spectral Regularization

The idea is to replace

c = (ΦnΦ
∗
n)
−1y =⇒ c = gλ(ΦnΦ

∗
n)y

where gλ(ΦnΦ∗n) approximates (ΦnΦ∗n)
−1 for small λ.

Algorithms
! Tikhonov regularization (ridge regression)

gλ(ΦnΦ
∗
n) = (ΦnΦ

∗
n + nλI)−1

! TSVD (principal component regression)
! Landweber iteration (L2 boosting)
! ν- method
! iterated Tikhonov

(Engl et al., Rosasco et l. ’05, Lo Gerfo et al. ’08, Bauer et. al. ’05)
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Early Stopping

A−1 ∼ η
t∑

j=1

(I − ηA)j
Gλ(σ) = η

t∑

j=1

(1− ησ)j ∼ 1
σ

Landweber Iteration

It is called L2 boosting in statistics and corresponds to:

gradient descent
set c0 = 0
for i= 1, . . . , t − 1

ci = ci−1 + η(y− ΦnΦ∗nci−1)

! Unconstrained minimization of the empirical least square error
via gradient descent.

! The regularization parameter is the iteration number

Landweber Iteration

It is called L2 boosting in statistics and corresponds to:

gradient descent
set c0 = 0
for i= 1, . . . , t − 1

ci = ci−1 + η(y− ΦnΦ∗nci−1)

! Unconstrained minimization of the empirical least square error
via gradient descent.

! The regularization parameter is the iteration number

α0 = 0

αi = αi−1 + η(Y −Kαi−1)
1, . . . , t f t =

n∑

i=1

αt
iK(xi, ·)

Implementation
Estimator

The filter correspond to a truncated expansion of the inverse.
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Early stopping at work
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Early stopping at work
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Remarks

• Empirical risk minimization with no 
constraints

• Regularization parameter is t: iteration 
regularizes

• No need of SVD

• Only matrix/vector multiplication 

O(N(TnT )2)
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Fast Solution for Tikhonov 
Regularization

Tikhonov Regularization can be solved at the 
price of a single task!

For Kernel of the form K(x, x′) = k(x, x′)A
we can diagonalize A and rotate data.
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Vector fields

29

 

 

Fig. 8 Visualization of the second artificial vector field without noise.

We then consider the case with normal noise whose standard deviation is indepen-
dent from the signal and is chosen to be 0.3. We follow the same experimental protocol
adopted for the noiseless case. The results are reported in Fig.?? and indicate that also
in the presence of noise the proposed approach consistently outperforms regressing on
each component independently. The advantage is stronger when fewer training points
are available, but it is still present even at higher training set cardinalities.

It is now interesting to apply this approach to a vector field that is not directly given
as the sum of a divergence-free and a curl-free part, but that satisfy the hypotheses of
Helmholtz decomposition of a vector field.

2D Vector Field - 2. The Helmholtz theorem states that a vector field, which is twice
continuously differentiable and which vanishes faster than 1/r at infinity, can be de-
composed as the sum of a gradient-free part and a curl-free part. Therefore, if we are
dealing with such a vector field, we expect to be able to estimate it via a combination
of the divergence-free and curl-free kernels. This second artificial experiment aims at
showing that it is indeed possible to obtain a better estimate using these kernels when
the vector field satisfies the assumptions of the Helmholtz theorem.

On a grid of 70×70 points within [−2, 2]× [−2, 2], we have generated a vector field
whose components are the given by

v1(x, y) = 2sin(3x)sin(1.5y)

v2(x, y) = 2cos(3y)cos(1.5x)

In order to enforce the decay at infinity the field is multiplied to a gaussian function
centered at the origin and of width 1.2. The field without noise is shown in Fig.??.

We followed the same experimental protocol adopted for the previous artificial
experiment. In this case there is no field parameter to vary, but only the amount of
noise, which we consider proportional to the signal. This means that for each point
of the field, the standard deviation of the noise added to the field in that point is

+
Convolution with a 
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Useful Kernels
Manuscript under review by AISTATS 2010

‖ΓC−Y‖2, it is easy to see that this is simply gradi-
ent descent . Further, it is can be shown by induction
that the solution at the t−th iteration is given by

Ct = η
t−1
∑

i=0

(I − ηΓ)iY,

and it follows that the filter function is Gλ(σ) =
η

∑t−1
i=0(I − ησ)i. Interestingly, Gλ(σ) has another in-

terpretation that can be seen recalling that
∑∞

i=0 xi =
(1−x)−1, for 0 < x < 1. A similar relation holds if we
consider matrices. Replacing x with 1 − ηΓ, we get

Γ−1 = η
∞
∑

i=0

(I − ηΓ)i.

The filter function of L2 boosting corresponds to the
truncated power series expansion of Γ−1. The last
reasoning also shows a possible way to choose the step-
size. In fact we should choose η so that ‖I − ηΓ‖ < 1,
where we use the operator norm.

Accelerated L2 Boosting. This method is also
called the ν-method and it is particularly interesting
since it is significantly faster than L2 boosting.
Usually, it can find the same solution in only

√
t

steps. The coefficients are found by setting C0 = 0,
ω1 = (4ν + 2)/(4ν + 1), C1 = C0 + ω1

n (Y − ΓC0) and
considering for i = 2, . . . , t − 1 the iteration given by

Ci = Ci−1 + ui(C
i−1 − Ci−2) +

ωi

n
(Y − ΓCi−1)

The derivation of the filter function is considerably
more complicated and is given in (?), where the pa-
rameters ν, ωi and ui are also defined. The filter func-
tion is shown to be Gt(σ) = pt(σ) with pt a polynomial
of degree t − 1.

Iterated Tikhonov. This method is a combination
of Tikhonov regularization and L2 boosting where we
set C0 = 0 and consider for i = 0, . . . , t−1 the iteration
(Γ + nλI)Ci = Y + nλCi−1. The filter function is:

Gλ(σ) =
(σ + λ)t − λt

σ(σ + λ)t
.

Truncated Singular Values Decomposition.

This method is akin to a projection onto the first
principal components in a vector valued setting. The
number of components depends on the regulariza-
tion parameter. The filter function is defined as
Gλ(σ) = 1/σ if σ ≥ λ/n and 0 otherwise.

4 MATRIX VALUED KERNELS

We briefly review some examples of matrix valued ker-
nels for vector fields learning.

Divergence free and curl free fields. These kernels
have been used in (?) to the problem of reconstructing
divergence-free or curl-free vector fields and theyr ap-
ply only for vector fields whose input and the output
spaces have the same dimensions. The divergence-free
kernel is

Γdf (x, x′) =
1

σ2
e−

||x−y||2

2σ2 Ax,x′ (8)

where

Ax,x′ =
(x − x′)(x − x′)T

σ2
+

(

(T − 1) −
||x − x′||2

σ2

)

I

and the curl-free is

Γcf (x, x′) =
1

σ2
e−

||x−x′||2

2σ2

(

I−
(x − x′)(x − x′)T

σ2

)

.

(9)
It is possible to consider a convex linear combination of
these two kernels for learning any vector field and for
reconstructing its divergence-free and curl-free parts
separately (see the experiments in Sect.??).

Transformable kernels. These kernels are defined
by transformations. Let Y = RT , X0 be a Hausdorff
space and Tp be a map (not necessarily linear) from X
to X0 for p = {1, . . . , T} . Then, given a continuous
scalar kernel K : X0 × X0 → R, for any x, x′ ∈ X , we
define the matrix valued kernel

Γ(x, x′) =
(

K(Tpx, Tqx
′)

)T

p,q=1
.

A Special Class of Kernels. A general class of
kernels consists of kernels of the form

Γ(x, x′) = K(x, x′)A (10)

where K is a scalar kernel and A a positive semidefi-
nite T × T matrix that encodes how the outputs are
related. This class of kernels allows to decouple the
role played by the input and output spaces. As we
show in Sect.??, it is possible to derive more efficient
learning schemes using these kernels. The role of the
matrix A can be understood by linking it to a regular-
izer on the components of the vector field.

Proposition 1. Let Γ be a product kernel of the form
in (??). Then the norm of any function in the corre-
sponding RKHS can be written as

||f ||2Γ =
T

∑

#,q=1

A†
#q < f #, f q >K , (11)

where A† is the pseudoinverse of A.

The above result shows how to design a kernel by defin-
ing a penalty on the components of the vector field.
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tion is shown to be Gt(σ) = pt(σ) with pt a polynomial
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This method is akin to a projection onto the first
principal components in a vector valued setting. The
number of components depends on the regulariza-
tion parameter. The filter function is defined as
Gλ(σ) = 1/σ if σ ≥ λ/n and 0 otherwise.

4 MATRIX VALUED KERNELS

We briefly review some examples of matrix valued ker-
nels for vector fields learning.

Divergence free and curl free fields. These kernels
have been used in (?) to the problem of reconstructing
divergence-free or curl-free vector fields and theyr ap-
ply only for vector fields whose input and the output
spaces have the same dimensions. The divergence-free
kernel is
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1

σ2
e−

||x−y||2

2σ2 Ax,x′ (8)
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1
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e−
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(

I−
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)

.

(9)
It is possible to consider a convex linear combination of
these two kernels for learning any vector field and for
reconstructing its divergence-free and curl-free parts
separately (see the experiments in Sect.??).

Transformable kernels. These kernels are defined
by transformations. Let Y = RT , X0 be a Hausdorff
space and Tp be a map (not necessarily linear) from X
to X0 for p = {1, . . . , T} . Then, given a continuous
scalar kernel K : X0 × X0 → R, for any x, x′ ∈ X , we
define the matrix valued kernel

Γ(x, x′) =
(

K(Tpx, Tqx
′)

)T

p,q=1
.

A Special Class of Kernels. A general class of
kernels consists of kernels of the form

Γ(x, x′) = K(x, x′)A (10)

where K is a scalar kernel and A a positive semidefi-
nite T × T matrix that encodes how the outputs are
related. This class of kernels allows to decouple the
role played by the input and output spaces. As we
show in Sect.??, it is possible to derive more efficient
learning schemes using these kernels. The role of the
matrix A can be understood by linking it to a regular-
izer on the components of the vector field.

Proposition 1. Let Γ be a product kernel of the form
in (??). Then the norm of any function in the corre-
sponding RKHS can be written as

||f ||2Γ =
T

∑

#,q=1

A†
#q < f #, f q >K , (11)

where A† is the pseudoinverse of A.

The above result shows how to design a kernel by defin-
ing a penalty on the components of the vector field.
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Divergence free and curl free fields. The following two matrix valued kernels apply
only for vector fields whose input and the output spaces have the same dimensions.
In (?) the problem of reconstructing divergence-free or curl-free vector fields is tackled
by means of the SVR method, with ad-hoc matrix valued kernels based on matrix
valued radial basis functions. These kernels induce a similarity between the vector field
components that depend on the input points, and therefore cannot be reduced to the
form Γ (x, x′) = K(x, x′)A. The divergence-free kernel is

Γdf (x, x′) =
1

σ2 e−
||x−y||2

2σ2 Ax,x′ (26)

where

Ax,x′ =

 

„

x − x′

σ

«„

x − x′

σ

«T

+

„

(T − 1) − ||x − x′||2

σ2

«

I

!

and the curl-free is

Γcf (x, x′) =
1

σ2 e−
||x−x′||2

2σ2

 

I−
„

x − x′

σ

«„

x − x′

σ

«T
!

. (27)

It is possible to consider a convex linear combination of these two kernels to obtain a
kernel for learning any kind of vector field, while at the same time allowing to recon-
struct the divergence-free and curl-free parts separately (see (?) and the experiments
in Sect.?? for more details).

Product of scalar kernels and operators. Another example of a class of kernels that
cannot be decomposed into the simple form Γ (x.x′) = K(x, x′)A, is given by kernels
defined as Γ (x, x′) =

Pm
i=1 Ki(x, x′)Bi, with m > 1 and Bi positive semi-definite

matrices (??). Contrary to the case m = 1, it is impossible to reduce the kernel Γ to
a diagonal one, unless all the matrices Bj can be transformed in diagonal form by the
same transformation.

Transformable kernels. In (?) examples of several other operator valued kernels (which
become matrix valued kernels if Y ⊆ R

T ) are introduced and their universality dis-
cussed. One such example is given by kernels defined by transformations. For the
purpose of our discussion, let Y = R

T , X0 be a Hausdorff space and Tp be a map (not
necessarily linear) from X to X0 for p = {1, . . . , T} . Then, given a continuous scalar
kernel K : X0 × X0 → R, it is possible to define the following matrix valued kernel for
any x, x′ ∈ X

Γ (x, x′) =
“

K(Tpx, Tqx′)
”T

p,q=1
.

4.2 Eigen-decomposition for Matrix-valued Kernels

Before discussing complexity issues, we describe some specific properties of kernels of
the form Γ (x, y) = K(x, y)A. The main point we make is that, for this class of kernels,
we can use the eigen-sytem of the matrix A to define a new coordinate system where
the problem can be solved in a easier way.

Divergence Free

Curl Free
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Figure 1: (a) Visualization of the artificial vector field
without noise. (b) Field estimated from a noisy training
set of 100 examples. (c-d) Divergence-free part and curl-
free part estimated with the corresponding kernels.

sample of points from this grid and their predictions
on the whole grid compared to the correct field. The
number of training examples is varied from 10 to 200
and for each cardinality the experiment is repeated 10
times with different sampling of the training points.
Following (?), we use an angular measure of error to
compare two fields. If vo = (v1

o , v2
o) and ve = (v1

e , v2
e)

are the original and estimated fields, we consider the
transformation v → ṽ = 1

||(v1,v2,1)||(v
1, v2, 1). The er-

ror measure is then err = arccos(ṽe · ṽo). This error
measure was derived by interpreting the vector field
as a velocity field and it is convenient because it han-
dles large and small signals without the amplification
inherent in a relative measure of vector differences.
We consider the noiseless case and the case where the

vector field is corrupted with gaussian noise, which we
assume to be proportional to the signal. This means
that for each point of the field, the standard deviation
of the noise in that point is proportional to the magni-
tude of the field. The accuracy obtained in both cases
is shown in Fig.??, from which the advantage of using
the combination of divergence-free and curl-free ker-
nels is apparent, especially for fewer training points.
Fig.?? (b) shows an example of estimated field and
its decomposition (c-d) into a divergence-free part and
curl-free part.
In Fig.?? we compare the learning times for Tikhonov

regularization and the ν-method. The experimental
results confirm our complexity analysis: the ν-method
is significantly faster than Tikhonov regularization,
while preserving its good generalization performance
(results not shown for brevity).
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Figure 2: Test errors for the proposed vector valued ap-
proach (VVR) and for learning each component of the field
independently (INDIP). Noiseless case (left) and field with
gaussian noise of width equal to 20% of the field magnitude
(right).
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Figure 3: Computation time (in seconds) for the whole
regularization path the ν-method and for Tikhonov regu-
larization. The experiment was performed on a desktop
PC with AMD Athlon X2 64 3.2GHz and 2GB RAM.
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free part estimated with the corresponding kernels.
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regularization path the ν-method and for Tikhonov regu-
larization. The experiment was performed on a desktop
PC with AMD Athlon X2 64 3.2GHz and 2GB RAM.
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||(v1,v2,1)||(v
1, v2, 1). The er-

ror measure is then err = arccos(ṽe · ṽo). This error
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Some Theory: 
Random Operators

Txf(x) =
1
n

n∑

i=1

K(x, xi)f(xi) Tf(x) =
∫

K(x, x)f(x)dρ(x)

The above result implies convergence of 
eigenfunctions and eigenvalues

P

(
‖T − Tx‖ ≤

Ct√
n

)
≥ 1− e−t2
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Learning Rates

(Caponnetto et al., b=1 Bauer at al. )

An Inverse Problem Perspective on Learning Theory

Theoretical Analysis

A Priori Parameter Choice

Theorem
If ∥∥T−r fρ

∥∥ ≤ R

with r > 1/2 and σi ∼ i−1/b, b > 1, then

P
(
‖fn − fρ‖2

ρ ≤ C
√

τn−
2rb

2rb+1

)
≥ 1− e−τ2

for λ = n−
1

2rb+1 .

The above estimate is optimal in a minimax sense.
Parameter choice can be done adaptively
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Comments

• One name,  3 problems?

• Learning the kernels?
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Vector Fields and Multi-tasks
Task 1

Task 2

X

X

Y
Component 1

Component 2

X

X

Y

Figure 1: Comparison of a multi-task and a vector valued learning problem. We consider a simplified situation in
which there are only two tasks/components and they are the same function. In the multi-task case, the tasks can
be sampled at different input points, whereas in the vector valued case it is natural to assume all the components
to be sampled at the same input points.

similar tastes tend to buy similar items and their buying history is probably related. The idea is then
to predict the consumer preferences for all individuals simultaneously by solving a multi-output learning
problem. Each consumer is modelled as a task and its previous preferences are the corresponding training
set. The second class of problems corresponds to learning vector valued functions. This situation is
better described as a supervised learning problem where the outputs are vector valued. For example, a
practical problem is that of estimating the velocity field of an incompressible fluid from scattered spatial
measurements (see experiments section).

The two problems are clearly related. Indeed, we can view tasks as components of a vector valued
function or equivalently learning each component of a vector valued function as one of many scalar tasks.
Nonetheless, there are also some differences that make the two problems different both from a practical
and a theoretical point of view. For example, in multi-task learning the input points for each task
(component) can be different, they can be represented by different features and the sample size might
vary from one task to the other. In particular each task can be sampled in a different way so that, in
some situations, we can essentially augment the number of effective points available for each individual
task, by assuming that the tasks are highly correlated. This effect does not occur while learning vector
fields - see Figure 1 - where each component is sampled at the same input points. Since the sampling
procedures are somewhat different, the error analyses for multi-task and vector valued learning are also
different. The latter case is closer to the scalar setting, whereas in the multi-task case the situation is
more complex: one might have different cardinalities for the various tasks or be interested to evaluate
performances for each task individually.

Several recent works considered multi-output learning, especially multi-task, and proposed a variety
of approaches. Starting from the work of (Caruana, 1997), related ideas have been developed in the
context of regularization methods (Argyriou et al, 2008b; Jacob et al, 2008), Bayesian techniques - e.g.
Gaussian processes (Boyle and Frean, 2005; Chai et al, 2009; Alvarez et al, 2009), collaborative filtering
(Abernethy et al, 2009) and online sequential learning (Abernethy et al, 2007). The specific problem
of learning a vector valued function has received considerably less attention in machine learning. In
statistics we mention the Curds & Whey method in (Breiman and Friedman, 1997), Reduced Rank
Regression (Izenman, 1975), Filtered Canonical y-variate Regression (van der Merwe and Zidek, 1980)
and Partial Least Squares (Wold et al, 1984). Interestingly, a literature on statistical techniques for vector
field estimation exists in the context of geophysics and goes under the name of kriging (or co-kriging)
(Stein, 1999). Few attempts to extend machine learning algorithms from the scalar to the vector setting
have also been made. For example some extensions of Support Vector Machines can be found in (Brudnak,
2006) or (Vazquez and Walter, 2003). A study of vector valued learning with kernel methods is started in
(Micchelli and Pontil, 2005), where regularized least squares are analyzed from the computational point
of view. The error analysis of vector valued Tikhonov regularization is given in (De Vito and Caponnetto,

2
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Different Regimes?
• n>d>T (classical)

• d>n (high dimensional inference)

• T>n, n>T (??)

• curse of dimensionality vs blessing of 
smoothness

• smoothness/d should be big
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Multiple Classes
Inputs belong to one of T classes

Journal of Machine Learning Research 5 (2004) 101-141 Submitted 4/03; Revised 8/03; Published 1/04
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Abstract
We consider the problem of multiclass classification. Our main thesis is that a simple

“one-vs-all” scheme is as accurate as any other approach, assuming that the underlying
binary classifiers are well-tuned regularized classifiers such as support vector machines.
This thesis is interesting in that it disagrees with a large body of recent published work
on multiclass classification. We support our position by means of a critical review of the
existing literature, a substantial collection of carefully controlled experimental work, and
theoretical arguments.
Keywords: Multiclass Classification, Regularization

1. Introduction

We consider the problem of multiclass classification. A training set consisting of data points
belonging to N different classes is given, and the goal is to construct a function which, given
a new data point, will correctly predict the class to which the new point belongs.1

Over the last decade, there has been great interest in classifiers that use regularization
to control the capacity of the function spaces they operate in. These classifiers—the best-
known example of which is the support vector machine (SVM) (Boser et al., 1992)—have
proved extremely successful at binary classification tasks (Vapnik, 1998, Evgeniou et al.,
2000, Rifkin, 2002). It therefore seems interesting to consider whether the advantages of
regularization approaches for binary classifiers carried over to the multiclass situation.

One of the simplest multiclass classification schemes built on top of real-valued binary
classifiers is to train N different binary classifiers, each one trained to distinguish the ex-
amples in a single class from the examples in all remaining classes. When it is desired to
classify a new example, the N classifiers are run, and the classifier which outputs the largest
(most positive) value is chosen. This scheme will be referred to as the “one-vs-all” or OVA

1. In our framework, each data point is required to belong to a single class. We distinguish this from the
case when there are more than two classes, but a given example can be a member of more than one class
simultaneously. In the latter case, if the labels are independent, the problem very naturally decomposes
into N unlinked binary problems, where the ith binary learner simply learns to distinguish whether or not
an example is in class i. If the labels are dependent, then how best to perform multiclass classification
is an interesting research problem, but is beyond the scope of this paper.

c©2004 Ryan Rifkin and Aldebaro Klautau.
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One Versus All

1 = (1,−1,−1, · · · ), 2 = (−1, 1,−1, · · · )...
Coding

min
f=(f1,··· ,fT )

n∑

i=1

‖yi − f(xi)‖2
T + λ

T∑

j=1

‖f j‖2

Regression of Coding Vectors

Classification Rule

c(x) = max
j=1,··· ,T

f j(x)
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Remarks

• No correlation among classes

• How can we estimate it?

• In simulation one observe improvement 
in probability estimation but NOT in 
classification performances.
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Regression vs Classification

• the components of the regression 
function are proportional of the 
conditional probabilities of each class

• the obtained estimator is Bayes 
Consistent
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Learning the Kernel?

• Bayesian Approaches (consistency 
guarantees/stability/computability?)

• Regularization (what is the underlying 
Kernel? How are the outputs related?)
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