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Geostatistics and Gaussian processes

Geostatistics
is not limited to Gaussian processes,
it usually refers to the concept of random functions,
it may also build on concepts from random sets theory.



Geostatistics

Geostatistics:
is mostly known for the kriging techniques.

Geostatistical simulation of random functions conditionnally on
data is used for non-linear estimation problems.
Bayesian inference of geostatistical parameters has become a
topic of research.
Sequential data assimilation is an extension of geostatistics
using a mechanistic model to describe the time dynamics.



In this (simple) talk:
we will stay with linear (Gaussian) geostatistics,
concentrate on kriging in a multi-scale and multi-variate context.

A typical application may be:
the response surface estimation problem
eventually with several correlated response variables.

Statistical inference of parameters will not be discussed.
We rather focus on the interpretation of geostatistical models.



Geostatistics: definition

Geostatistics is an application of the theory of regionalized variables
to the problem of predicting spatial phenomena.

(G. MATHERON, 1970)

We consider the regionalized variable z(x) to be
a realization of a random function Z (x).



Stationarity

For the top series:
we think of a (2nd order) stationary model

For the bottom series:
a mean and a finite variance do not make sense,
rather the realization of a non-stationary process without drift.



Second-order stationary model
Mean and covariance are translation invariant

The mean of the random function does not depend on x :

E
[

Z (x)
]

= m

The covariance depends on length and orientation of
the vector h linking two points x and x′ = x + h:

cov(Z (x), Z (x′)) = C(h) = E
[ (

Z (x)−m
)
·
(

Z (x+h)−m
) ]



Non-stationary model (without drift)
Variance of increments is translation invariant

The mean of increments does not depend on x and is zero:

E
[

Z (x+h)− Z (x)
]

= m(h) = 0

The variance of increments depends only on h:

var
[

Z (x+h)−Z (x)
]

= 2 γ(h)

This is called intrinsic stationarity.
Intrinsic stationarity does not imply 2nd order stationarity.
2nd order stationarity implies stationary increments.



The variogram

With intrinsic stationarity:

γ(h) =
1
2

E
[ (

Z (x+h)− Z (x)
)2 ]

Properties
- zero at the origin γ(0) = 0
- positive values γ(h) ≥ 0
- even function γ(h) = γ(−h)

The covariance function is bounded by the variance:
C(0) = σ2 ≥ |C(h) |
The variogram is not bounded.
A variogram can always be constructed
from a given covariance function: γ(h) = C(0)−C(h)
The converse is not true.



What is a variogram ?

A covariance function is a positive definite function.

What is a variogram?
A variogram is a conditionnally negative definite function.
In particular:

any variogram matrix Γ = [γ(xα−xβ)] is
conditionally negative semi-definite,

[wα]>
[
γ(xα−xβ)

]
[wα] = w>Γ w ≤ 0

for any set of weights with

n

∑
α=0

wα = 0.



Ordinary kriging

Estimator: Z ?(x0) =
n

∑
α=1

wα Z (xα) with
n

∑
α=1

wα = 1

Solving:

arg min
w1,...,wn,µ

[
var (Z ?(x0)− Z (x0))− 2µ(

n

∑
α=1

wα − 1)

]
yields the system:

n

∑
β=1

wβ γ(xα−xβ) + µ = γ(xα−x0) ∀α

n

∑
β=1

wβ = 1

and the kriging variance: σ2
K = µ +

n

∑
α=1

wα γ(xα−x0)
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Anisotropy of the random function
Consequences in terms of sampling design

Mobile phone exposure of
children

by Liudmila Kudryavtseva
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Phone position and child head
Head of 12 year old child



SAR exposure (simulated)



Max SAR for different positions of phone
The phone positions are characterized by two angles

The SAR values are normalized with respect to 1 W.
Regular sampling.



Variogram: 4 directions
Linear anisotropic variogram model

The sample variogram is not bounded.
The anisotropy is not parallel to coordinate system.



Max SAR kriged map



Prediction error
Kriging standard deviations σK

The sampling design is not appropriate due to the anisotropy.



Prediction error
Different sample design

Changing the sampling design leads to smaller σK.
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Linear model of coregionalization

The linear model of coregionalization (LMC) combines:
a linear model for different scales of the spatial variation,
a linear model for components of the multivariate variation.
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Two linear models

Linear Model of Regionalization: Z (x) =
S
∑

u=0
Yu(x)

E
[

Yu(x+h)− Yu(x)
]

= 0

E
[ (

Yu(x+h)− Yu(x)
)
·
(

Yv (x+h)− Yv (x)
) ]

= gu(h) δuv

Linear Model of PCA: Zi =
N
∑

p=1
aip Yp

E
[

Yp

]
= 0

cov
(

Yp, Yq

)
= 0 for p 6= q



Linear Model of Coregionalization

Spatial and multivariate representation of Zi (x) using
uncorrelated factors Y p

u (x) with coefficients au
ip:

Zi (x) =
S

∑
u=0

N

∑
p=1

au
ip Y p

u (x)

Given u, all factors Y p
u (x) have the same variogram gu(h).

This implies a multivariate nested variogram:

Γ(h) =
S

∑
u=0

Bu gu(h)



Coregionalization matrices

The coregionalization matrices Bu characterize
the correlation between the variables Zi
at different spatial scales.

In practice:
1 A multivariate nested variogram model is fitted.
2 Each matrix is then decomposed using a PCA:

Bu =
[

bu
ij

]
=
[ N

∑
p=1

au
ip au

jp

]
yielding the coefficients of the LMC.



LMC: intrinsic correlation

When all coregionalization matrices are proportional to a matrix B:

Bu = au B

we have an intrinsically correlated LMC:

Γ(h) = B
S

∑
u=0

au gu(h) = B γ(h)

In practice, with intrinsic correlation, the eigenanalysis of the different
Bu will yield:

different sets of eigenvalues,
but identical sets of eigenvectors.



Regionalized Multivariate Data Analysis

With intrinsic correlation:

The factors are autokrigeable,
i.e. the factors can be computed
from a classical MDA on
the variance-covariance matrix V ∼= B
and are kriged subsequently.

With spatial-scale dependent correlation:

The factors are defined on the basis of
the coregionalization matrices Bu
and are cokriged subsequently.

Need for a regionalized multivariate data analysis!



Regionalized PCA ?

Variables Zi (x)

↓
Intrinsic Correlation ? no−→ γij (h) = ∑

u
Bu gu(h)

↓ yes ↓

PCA on B PCA on Bu

↓ ↓
Transform into Y Cokrige Y ?

u0p0
(x)

↓ ↓

Krige Y ?
p0

(x) −→ Map of PC
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in the Golfe du Lion
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Modeling of spatial variability
as the sum of a small-scale and a large-scale process

SST on 7 june 2005
The variogram of the Nar16 im-
age is fitted with a short- and a
long-range structure (with geo-
metrical anisotropy).

Variogram of SST

The small-scale components
of the NAR16 image

and
of corresponding MARS ocean-model output

are extracted by geostatistical filtering.



Geostatistical filtering
Small scale (top) and large scale (bottom) features
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Zoom into NE corner

Bathymetry
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Cokriging in NE corner
Small-scale (top) and large-scale (bottom) components
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NAR16 image MARS model output
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Consequence

To correct for the discrepancies between remotely sensed SST and
MARS ocean model SST, the latter was thoroughly revised in order
better reproduce the path of the Ligurian current.
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Separable multivariate and spatial correlation
Intrinsic correlation model (Matheron, 1965)

A simple model for the matrix Γ(h)
of direct and cross variograms γij (h) is:

Γ(h) =
[

γij (h)
]

= B γ(h)

where B is a positive semi-definite matrix.

The multivariate and spatial correlation factorize (separability).

In this model all variograms are proportional
to a basic variogram γ(h):

γij (h) = bij γ(h)



Codispersion Coefficients
Matheron (1965)

A coregionalization is intrinsically correlated
when the codispersion coefficients:

ccij (h) =
γij (h)√

γii (h) γjj (h)

are constant, i.e. do not depend on spatial scale.
With the intrinsic correlation model:

ccij (h) =
bij γ(h)√
bii bjj γ(h)

= rij

the correlation rij between variables is
not a function of h.



Intrinsic Correlation: Covariance Model

For a covariance function matrix the model becomes:

C(h) = V ρ(h)

where
V =

[
σij

]
is the variance-covariance matrix,

ρ(h) is an autocorrelation function.

The correlations between variables do not depend on the spatial
scale h, hence the adjective intrinsic.



Testing for Intrinsic Correlation
Exploratory test

1 Compute principal components for the variable set.
2 Compute the cross-variograms between principal components.

In case of intrinsic correlation, the cross-variograms
between principal components should all be zero.



Cross variogram: two principal components
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The ordinate is scaled using the perfect correlation envelope
(Wackernagel, 2003)
The intrinsic correlation model is not adequate!



Testing for Intrinsic Correlation
Hypothesis testing

A testing methodology based on asymptotic joint normality of the
sample space-time cross-covariance estimators is proposed in
LI, GENTON and SHERMAN (2008).
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Ordinary cokriging

Estimator: Z ?
i0,OK(x0) =

N

∑
i=1

ni

∑
α=1

w i
α Zi (xα)

with constrained weights: ∑
α

w i
α = δi,i0

A priori a (very) large linear system:
N · n + N equations,
(N · n + N)2 dimensional matrix to invert.

The good news:
for some covariance models
a number of equations may be left out
— knowing that the corresponding w i

α = 0.



Data configuration and neighborhood

Data configuration: the sites of the different types of inputs.

Are sites shared by different inputs — or not?

Neighborhood: a subset of the available data used in cokriging.

How should the cokriging neighborhood be defined?
What are the links with the covariance structure?

Depending on the multivariate covariance structure,
data at specific sites of the primary or secondary variables
may be weighted with zeroes
— being thus uninformative.



Data configurations
Iso- and heterotopic

primary data secondary data

Heterotopic data

Sample sites

may be different

covers whole domain

Sample sites 

are shared
Isotopic data

Secondary data

Dense auxiliary data



Configuration: isotopic data
Auto-krigeability

A primary variable Z1(x) is self-krigeable (auto-krigeable),
if the cross-variograms of that variable with
the other variables are all proportional to
the direct variogram of Z1(x):

γ1j (h) = a1j γ11(h) for j = 2, . . . , N

Isotopic data:
self-krigeability implies that
the cokriging boils down to the corresponding kriging.

If all variables are auto-krigeable,
the set of variables is intrinsically correlated:

multivariate variation is separable
from spatial variation.



Configuration: dense auxiliary data
Possible neighborhoods

H H

primary data H target point secondary data

HA

CB

D H

Choices of neighborhood:
A all data
B multi-collocated with target and primary data
C collocated with target
D dislocated



Neighborhood: all data

H

primary data

target point

secondary data

H

Very dense auxiliary data (e.g. remote sensing):
large cokriging system, potential numerical instabilities.

Ways out:
moving neighborhood,
multi-collocated neighborhood,
sparser cokriging matrix: covariance tapering.



Neighborhood: multi-collocated

H

H

primary data

target point

secondary data

Multi-collocated cokriging can be equivalent to full cokriging
when there is proportionality in the covariance structure,
for different forms of cokriging: simple, ordinary, universal



Neighborhood: multi-collocated
Example of proportionality in the covariance model

Cokriging with all data is equivalent to cokriging with a
multi-collocated neighborhood for a model with a
covariance structure is of the type:

C11(h) = p2 C(h) + C1(h)
C22(h) = C(h)
C12(h) = p C(h)

where p is a proportionality coefficient.



Cokriging neighborhoods

RIVOIRARD (2004), SUBRAMANYAM AND PANDALAI (2008) looked at
various examples of this kind,

examining bi- and multi-variate coregionalization models
in connection with different data configurations

to determine the neighborhoods resulting from
different choices of models.

Among them:
the dislocated neighborhood:

H

primary data

target point

secondary data

H



NIPS 2009 • Whistler, december 2009

Introduction
Geostatistical Model
Covariance structure

Cokriging
Conclusion

Conclusion

Hans Wackernagel Geostatistics for Gaussian processes



Conclusion

Multi-output cokriging problems are very large.
Analysis of the multivariate covariance structure may reveal
the possibility of simplifying the cokriging system,
allowing a reduction of the size of the neighborhood.
Analysis of directional variograms may reveal anisotropies
(not necessarily parallel to the coordinate system).
Sampling design can be improved by knowledge of spatial
structure.
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APPENDIX



Geostatistical simulation



Conditional Gaussian simulation
Comparison with kriging

Simulation (left) Samples (right)

Simple kriging (left) Conditional simulation (right)

See LANTUÉJOUL (2002), CHILÈS & DELFINER (1999)



Geostatisticians do not use
the Gaussian covariance function



Stable covariance functions

The stable1 family of covariances functions is defined as:

C(h) = b exp
(
−|h|

p

a

)
with 0 < p ≤ 2

and the Gaussian covariance function is the case p = 2:

C(h) = b exp

(
−|h|

2

a

)

where b is the value at the origin and a is the range parameter.

1Named after the stable distribution function.



Davis data set

The data set from DAVIS (1973) is sampled from a smooth surface
and was used by numerous authors.

Applying ordinary kriging using a unique neighborhood and a
stable covariance function with p = 1.5 provides a map of the
surface of the same kind that is obtained with other models, e.g.
with a spherical covariance using a range parameter of 100ft.
If a Gaussian covariance is used, dramatic extrapolation effects
can be observed, while the kriging standard deviation is
extremely low.

Example from Wackernagel (2003), p55 and pp 116–118.



Stable covariance function (p=1.5)
Neighborhood: all data



Gaussian covariance function
Stable covariance: pathological case p=2



Conclusion

Use of the Gaussian covariance function,
when no nugget-effect is added,
may lead to undesirable extrapolation effects.
Alternate models with the same shape:

the cubic covariance function,
stable covariance with 1 < p < 2.

The case p = 2 of a stable covariance function
(Gaussian covariance function) is pathological,
because realizations of the corresponding random function
are infinitely often differentiable
(they are analytic functions):
this is contradictory with their randomness
(see MATHERON 1972, C-53, p73-74 )2.
See also discussion in STEIN (1999).

2Available online at: http://cg.ensmp.fr/bibliotheque/public

http://cg.ensmp.fr/bibliotheque/public
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