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Emulators for computer models

We want to emulate a p-input, k-output deterministic computer
model.

• Treat the computer model as an unknown function
η : X ⊂ R

p 7→ R
k

• Prior:
η(.)|β,Σ,Φ ∼ GPk[m(.),C(., .)]

• m(x) = (1 xT )β : we use a linear trend

• C(x,x′) : a k × k matrix covariance function with
hyperparameters (Σ,Φ)

⊲ A more complex regression structure may reduce the
importance of the covariance function (cf J. Rougier)

⊲ But only if it is a good representation of the structure of
the computer model.



The covariance function

We assume there is little knowledge about structure of η(.). The
focus of our work is the multivariate covariance function C(., .).

• Represents 2 types of correlation in our beliefs about
the residuals (after subtracting the trend):

⊲ correlation between different outputs
⊲ correlation over input-space - η(.) is smooth

• Remember: there is no ‘true’ correlation between the
outputs.

How do we go about specifying and combining the 2 types of
correlation?



1. Independent outputs (IND)

Most straightforward:

Ignore any between-output correlation, treat outputs as being
independent

cov[ηi(x), ηj(x
′)] = δijσ

2
j cj(x,x′)

• Build a univariate GP emulator for each output

• Each output has its own spatial correlation function

• Train the emulator for output j using only data from
output j.



2. Separable covariance (SEP)

Easiest way to define a multivariate covariance function:

Treat the two types of correlation as separable
(e.g. Conti & O’Hagan, 2007)

C(x,x′) = Σc(x,x′)

• Σ : between-outputs covariance matrix

• c(x,x′) : spatial correlation function

Disadvantage: all outputs share the same spatial correlation
function c(x,x′)



3. Non-separable covariance

Somewhere between IND and SEP:

The Linear Model of Coregionalization (LMC)
(e.g. Wackernagel, 1995; Gelfand et al., 2004)

• Outputs are linear combination of independent univariate
GPs in vector Z(.):

η(.) = βh(.) + RZ(.)

Zj(.) ∼ GP [0, κj(., .)] j = 1, ..., k

⊲ we use squared exponentials for κj(., .)

• Between-output covariance at any given input is Σ = RRT



η(.) = βh(.) + RZ(.), Zj(.) ∼ GP [0, κj(., .)]

⇒ C(x,x′) =

k
∑

ℓ=1

Tℓκℓ(x,x′), Tℓ = R•ℓR•ℓ

This is a special case of the ‘nested covariance’ model,

C(x,x′) =

S
∑

ℓ=1

Tℓκℓ(x,x′)

• Taking S = k and Tℓ = R•ℓR•ℓ is a ‘natural’ way of
ensuring the Tℓ are positive semi-def:

⊲ parameterise by Σ = cov[η(x), η(x)]
⊲ decompose as Σ = RRT

⊲ the correlation function for an individual output is a
weighted sum of ‘basis’ functions κj(., .).

⊲ if no between-output correlation, then
corr[ηj(x), ηj(x

′)] = κj(x,x′), i.e. equivalent to IND.



Inference for hyperparameters

Hyperparameters in the GP prior,
η(.)|β,Σ,Φ ∼ GPk[m(.),C(., .)]:

• β, regression coefficients

⊲ conjugate prior, integrated out

• Σ, between-output covariance

⊲ SEP/IND: conjugate prior, integrated out
⊲ LMC: analytic integration not possible

• Φ, spatial correlation function parameters

⊲ analytic integration not possible for any of the emulators

For hyperparameters that cannot be analytically integrated:
we estimate by MLE and treat as fixed.



Regular outputs

We make the assumption that the computer model has regular

outputs:

• The set of outputs is finite and fixed.

• Every output is observed at every input point (cf. isotopic

data in geostatistics)

For SEP, this implies that the posterior for output j is a
function only of data from output j:

ηj(.)|yj ⊥ yi ∀i 6= j

Does a multivariate specification ever help?



Case Study 1: Simple Climate
Model

(Work with Nathan Urban)

• 5 inputs
• We shall focus on 2 univariate outputs:

⊲ CO2 flux in the year 2000 (CO2)
⊲ Surface temperature in the year 2000 (temp)

• Data: 60 training runs in an Latin hypercube design.

• Validation: a further 100 model runs.

• Emulators:
⊲ SEP, a separable emulator

• 1 squared-exponential correlation function

⊲ LMC, an LMC emulator
• 2 squared-exponential basis correlation functions

⊲ IND, 2 independent univariate emulators
• each with 1 squared-exponential correlation function
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Independent emulators do just as well as LMC
- So why bother with the multivariate specification?

Example: Gross Primary Productivity (GPP), Π, a univariate
function of the outputs

Π = Πmax

[

CO2

(CO2 + C)
+ (Topt × temp + 0.5 × temp2

]

What is the predictive distribution Π?

• simulate from the joint posterior of (CO2, T emp)
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Case Study 2: A Finite Element
Model

A simple finite element model for an aeroplane (Work with Neil

Sims)

• The structure is represented by a large number of nodes.
⊲ The structure is represented by a large number of nodes.
⊲ A smaller number of parameters are used to set the overall

physical properties of the structure - e.g. wing length,
fuselage thickness, etc.

⊲ Select 5 as the variable inputs
• Outputs:

⊲ 3 pairs of mass and stiffness ‘modal parameters’, (mi, ki).

• The outputs are then combined to form the coefficients in a
frequency response function,

FRF (ω) =

3
∑

i=1

1

ki − ω2mi
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Single validation point, FRF (ω)
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Conclusions

• I have not found any circumstances where a multivariate
emulator outperforms independent univariate emulators if

we are only interested in marginal predictions of individual

outputs.

• But it does not seem uncommon for multiple outputs of a
computer model to be used jointly.

• In this case, a multivariate specification can be important
for propagating the uncertainty surrounding the joint
predictions.

• A non-separable covariance structure can lead to better
predictions by allowing different spatial correlation
functions for different outputs.
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