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Dimensionality Reduction I

Linear relationship between the data, X ∈ <N×d , and a reduced
dimensional representation, F ∈ <N×q, where q � d .

X = FW + ε,

ε ∼ N (0,Σ)

Integrate out F, optimize with respect to W.

For temporal data and a particular Gaussian prior in the latent space:
Kalman filter/smoother.

More generally consider a Gaussian process (GP) prior,

p (F|t) =

q∏
i=1

N
(
f:,i |0,Kf:,i ,f:,i

)
.

Neil D. Lawrence (Manchester) Latent Force Models 23rd July 2009 4 / 36



Dimensionality Reduction II

Given the covariance functions for {fi (t)} the implied covariance
functions for {xi (t)} — semi-parametric latent factor model (Teh
et al., 2005). Linear Models of Coregionalization.

Kalman filter/smoother approach has been preferred

I linear computational complexity in N.
I Advances in sparse approximations have made the general GP

framework practical. (Snelson and Ghahramani, 2006; Quiñonero Candela

and Rasmussen, 2005; Titsias, 2009).
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Mechanical Analogy

These models rely on the latent variables to provide the dynamic
information.

We now introduce a further dynamical system with a mechanistic
inspiration.

Physical Interpretation:

I the latent functions, fi (t) are q forces.
I We observe the displacement of d springs to the forces.,
I Interpret system as the force balance equation, XD = FS + ε.
I Forces act, e.g. through levers — a matrix of sensitivities, S ∈ <q×d .
I Diagonal matrix of spring constants, D ∈ <d×d .
I Original System: W = SD−1.
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Extend Model

Add a damper and give the system mass.

FS = ẌM + ẊC + XD + ε.

Now have a second order mechanical system.

It will exhibit inertia and resonance.

There are many systems that can also be represented by differential
equations.

I When being forced by latent function(s), {fi (t)}q
i=1, we call this a

latent force model.
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Gaussian Process priors and Latent Force Models
Driven Harmonic Oscillator

For Gaussian process we can compute the covariance matrices for the
output displacements.

For one displacement the model is

mk ẍk(t) + ck ẋk(t) + dkxk(t) = bk +
M∑

i=0

sik fi (t), (1)

where, mk is the kth diagonal element from M and similarly for ck

and dk . sik is the i , kth element of S.

Model the latent forces as q independent, GPs with RBF covariances

kfi fl
(t, t ′) = exp

(
−(t − t ′)2

σ2
i

)
δil .
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Covariance for ODE Model

RBF Kernel function for f (t)

xj (t) =
1

mjωj

q∑
i=1

Sji exp(−αj t)

∫ t

0
fi (u) exp(αju) sin(ωj (t − u))du

Joint distribution
for x1 (t), x2 (t),
x3 (t) and f (t).
Damping ratios:
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Joint Sampling of x (t) and f (t)

demLfmSample
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Figure: Joint samples from the ODE covariance, cyan: f (t), red:
x1 (t)(underdamped) and green: x2 (t) (overdamped) and blue: x3 (t)
(critically damped).
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Example: Motion Capture

Mauricio Alvarez and David Luengo (Álvarez et al., 2009)

Motion capture data: used for animating human motion.

Multivariate time series of angles representing joint positions.

Objective: generalize from training data to realistic motions.

Use 2nd Order Latent Force Model with mass/spring/damper (resistor
inductor capacitor) at each joint. demAistats
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Example: Transcriptional Regulation

r

First Order Differential Equation

dxj (t)

dt
= Bj + Sj f (t)− Djxj (t)

Can be used as a model of gene transcription: Barenco et al., 2006;
Gao et al., 2008.

xj (t) – concentration of gene j ’s mRNA

f (t) – concentration of active transcription factor

Model parameters: baseline Bj , sensitivity Sj and decay Dj

Application: identifying co-regulated genes (targets)

Problem: how do we fit the model when f (t) is not observed?
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Artificial Example: Inferring f (t)
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p53 “Guardian of the Cell”

Responsible for Repairing DNA damage

Activates DNA Repair proteins

Pauses the Cell Cycle (prevents replication of damage DNA)

Initiates apoptosis (cell death) in the case where damage can’t be
repaired.

Large scale feeback loop with NF-κB.
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p53 DNA Damage Repair

Figure: p53. Left unbound, Right bound to DNA. Images by David S. Goodsell
from http://www.rcsb.org/ (see the “Molecule of the Month” feature).
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p53

Figure: Repair of DNA damage by p53. Image fromGoodsell (1999).
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Modelling Assumption

Assume p53 affects targets as a single input module network motif
(SIM).

p53

p21

DDB2

PA26

BIK

TNFRSF10b

Figure: p53 SIM network motif as modelled by Barenco et al. 2006.
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p53 (RBF covariance)
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Ranking with ERK Signalling

Target Ranking for Elk-1.

Elk-1 is phosphorylated by ERK from the EGF signalling pathway.

Predict concentration of Elk-1 from known targets.

Rank other targets of Elk-1.
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Elk-1 (MLP covariance)
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Elk-1 target selection

Fitted model used to rank potential targets of Elk-1
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Cascaded Differential Equations

Antti Honkela

Transcription factor protein also has governing mRNA.

This mRNA can be measured.

In signalling systems this measurement can be misleading because it is
activated (phosphorylated) transcription factor that counts.

In development phosphorylation plays less of a role.
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Drosophila Mesoderm Development

Collaboration with Furlong Lab in EMBL Heidelberg.

Mesoderm development in Drosophila melanogaster (fruit fly).

Mesoderm forms in triplobastic animals (along with ectoderm and
endoderm). Mesoderm develops into muscles, and circulatory system.

The transcription factor Twist initiates Drosophila mesoderm
development, resulting in the formation of heart, somatic muscle, and
other cell types.

Wildtype microarray experiments publicly available.

Can we use the cascade model to predict viable targets of Twist?
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Cascaded Differential Equations

Antti Honkela

We take the production rate of active transcription factor to be given by

df (t)

dt
= σy (t)− δf (t)

dxj (t)

dt
= Bj + Sj f (t)− Djxj (t)

The solution for f (t), setting transient terms to zero, is

f (t) = σ exp (−δt)

∫ t

0
y(u) exp (δu) du .
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Covariance for Translation/Transcription Model

RBF covariance function for y (t)

f (t) = σ exp (−δt)

Z t

0

y(u) exp (δu) du

xi (t) =
Bi

Di
+ Si exp (−Di t)

Z t

0

f (u) exp (Diu) du.

Joint distribution
for x1 (t), x2 (t),
f (t) and y (t).

Here:
δ D1 S1 D2 S2

0.1 5 5 0.5 0.5
y(t) f(t) x1(t) x2(t)

y(t)

f(t)

x1(t)

x2(t)
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0.4

0.6

0.8
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Twist Results

Use mRNA of Twist as driving input.

For each gene build a cascade model that forces Twist to be the only
TF.

Compare fit of this model to a baseline (e.g. similar model but
sensitivity zero).

Rank according to the likelihood above the baseline.
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Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn0002526.
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Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn0003486.
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Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn0011206.
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Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn00309055.
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Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn0031907.
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Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn0035257.
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Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn0039286.
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Results of Ranking
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Figure: Percentage enrichment for top N targets for relevant terms in Drosophila
in situs.

Neil D. Lawrence (Manchester) Latent Force Models 23rd July 2009 31 / 36



Results of Ranking
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Figure: Percentage enrichment for top N targets for ChIP-chip confirmed targets.
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Summary

Cascade models allow genomewide analysis of potential targets given
only expression data.

Once a set of potential candidate targets have been identified, they
can be modelled in a more complex manner.

We don’t have ground truth, but evidence indicates that the approach
can perform as well as knockouts.
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Discussion and Future Work

Integration of probabilistic inference with mechanistic models.

These results are small simple systems.

Other aspects:

I Non-linear responses in differential equations (Michalis Titsias’s work
— turn to sampling, Pei Gao — use Laplace approximation).

I Scaling up to larger systems (Mauricio’s Talk).
I Applications to other types of system, e.g. spatial systems etc. (using

PDEs (Álvarez et al., 2009))
I Stochastic differential equations (financial time series example).
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