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Introduction



Geostatistics and Gaussian processes

Geostatistics
is not limited to Gaussian processes,
it usually refers to the concept of random functions,
it may also build on concepts from random sets theory.



Geostatistics

Geostatistics:
is mostly known for the kriging techniques,
nowadays deals much with geostatistical simulation.

Bayesian inference of geostatistical parameters has also become
a topic of research.
Sequential data assimilation is an extension of geostatistics
using a mechanistic model to describe the time dynamics.



In this talk:
we will stay with linear (Gaussian) geostatistics,
concentrate on kriging in a multi-scale and multi-variate context.

A typical application may be:
the response surface estimation problem
eventually with several correlated response variables.

Statistical inference of parameters will not be discussed.



Statistics vs Machine Learning ?
Necessity of an interface meeting

Differences (subjective):
geostatistics favours interpretability of the statistical model,
machine learning stresses prediction performance and
computational perfomance of algorithms.

Ideally both should be achieved.



Geostatistics: definition

Geostatistics is an application of the theory of regionalized variables
to the problem of predicting spatial phenomena.

(G. MATHERON, 1970)

Usually we consider the regionalized variable z(x) to be a realization
of a random function Z (x).



Stationarity

For the top series:
we think of a (2nd order) stationary model

For the bottom series:
a mean and a finite variance do not make sense,
rather the realization of a non-stationary process without drift.



Second-order stationary model
Mean and covariance are translation invariant

The mean of the random function does not depend on x :

E
[

Z (x)
]

= m

The covariance depends on length and orientation of
the vector h linking two points x and x′ = x+h:

cov(Z (x),Z (x′)) = C(h) = E
[(

Z (x)−m
)
·
(

Z (x+h)−m
)]



Non-stationary model (without drift)
Variance of increments is translation invariant

The mean of increments does not depend on x and is zero:

E
[

Z (x+h)−Z (x)
]

= m(h) = 0

The variance of increments depends only on h:

var
[

Z (x+h)−Z (x)
]

= 2γ(h)

This is called intrinsic stationarity.
Intrinsic stationarity does not imply 2nd order stationarity.
2nd order stationarity implies stationary increments.



The variogram

With intrinsic stationarity:

γ(h) =
1
2

E
[(

Z (x+h)−Z (x)
)2 ]

Properties
- zero at the origin γ(0) = 0
- positive values γ(h) ≥ 0
- even function γ(h) = γ(−h)

The covariance function is bounded by the variance:
C(0) = σ2 ≥ |C(h) |
The variogram is not bounded.
A variogram can always be constructed
from a given covariance function: γ(h) = C(0)−C(h)
The converse is not true.



What is a variogram ?

A covariance function is a positive definite function.

What is a variogram?
A variogram is a conditionnally negative definite function.
In particular:

any variogram matrix Γ = [γ(xα−xβ )] is
conditionally negative semi-definite,

[wα ]>
[
γ(xα−xβ )

]
[wα ] = w>Γw ≤ 0

for any set of weights with

n

∑
α=0

wα = 0.



Ordinary kriging

Estimator: Z ?(x0) =
n

∑
α=1

wα Z (xα) with
n

∑
α=1

wα = 1

Solving:

argmin
w1,...,wn,µ

[
var(Z ?(x0)−Z (x0))−2µ(

n

∑
α=1

wα −1)

]
yields the system:

n

∑
β=1

wβ γ(xα−xβ )+ µ = γ(xα−x0) ∀α

n

∑
β=1

wβ = 1

and the kriging variance: σ2
K = µ +

n

∑
α=1

wα γ(xα−x0)



Kriging the mean
Stationary model: Z (x) = Y (x)+m

Estimator: M? =
n

∑
α=1

wα Z (xα) with
n

∑
α=1

wα = 1

Solving:

argmin
w1,...,wn,µ

[
var(M?−m)−2µ(

n

∑
α=1

wα −1)

]
yields the system:

n

∑
β=1

wβ C(xα−xβ )−µ = 0 ∀α

n

∑
β=1

wβ = 1

and the kriging variance: σ2
K = µ



Kriging a component
Stationary model: Z (x) =

S

∑
u=0

Yu(x)+m (Yu ⊥ Yv foru 6= v)

Estimator: Y ?
u0

(x0) =
n

∑
α=1

wα Z (xα) with
n

∑
α=1

wα = 0

Solving:

argmin
w1,...,wn,µ

[
var
(

Y ?
u0

(x0)−Yu0(x0)
)
−2µ

n

∑
α=1

wα

]
yields the system:

n

∑
β=1

wβ C(xα−xβ )−µ = Cu0(xα−x0) ∀α

n

∑
β=1

wβ = 0



Mobile phone exposure of children
by Liudmila KUDRYAVTSEVA

http://perso.rd.francetelecom.fr/joe.wiart/

http://perso.rd.francetelecom.fr/joe.wiart/


Child heads at different ages



Phone position and child head
Head of 12 year old child



SAR exposure (simulated)



Max SAR for different positions of phone
The phone positions are characterized by two angles

The SAR values are normalized with respect to 1 W.



Variogram
Anisotropic linear variogram model



Max SAR kriged map



Kriging standard deviations



Kriging standard deviations
Different sample design
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Geostatistical filtering:
Skagerrak SST



NAR16 images on 26-27 april 2005
Sea-surface temperature (SST)
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Nested variogram model

Nested scales modeled by sum of different variograms:
micro-scale nugget-effect of .005
small scale spherical model (range .4 deg longitude, sill .06)
large scale linear model



Geostatistical filtering
Small-scale variability of NAR16 images
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Geostatistical Model
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Linear model of coregionalization

The linear model of coregionalization (LMC) combines:
a linear model for different scales of the spatial variation,
a linear model for components of the multivariate variation.



Two linear models

Linear Model of Regionalization: Z (x) =
S
∑

u=0
Yu(x)

E
[

Yu(x+h)−Yu(x)
]

= 0

E
[(

Yu(x+h)−Yu(x)
)
·
(

Yv (x+h)−Yv (x)
)]

= gu(h)δuv

Linear Model of PCA: Zi =
N
∑

p=1
aip Yp

E
[

Yp

]
= 0

cov
(

Yp,Yq

)
= 0 for p 6= q



Linear Model of Coregionalization

Spatial and multivariate representation of Zi(x) using
uncorrelated factors Y p

u (x) with coefficients au
ip:

Zi(x) =
S

∑
u=0

N

∑
p=1

au
ip Y p

u (x)

Given u, all factors Y p
u (x) have the same variogram gu(h).

This implies a multivariate nested variogram:

Γ(h) =
S

∑
u=0

Bu gu(h)



Coregionalization matrices

The coregionalization matrices Bu characterize
the correlation between the variables Zi
at different spatial scales.

In practice:
1 A multivariate nested variogram model is fitted.
2 Each matrix is then decomposed using a PCA:

Bu =
[

bu
ij

]
=
[ N

∑
p=1

au
ip au

jp

]
yielding the coefficients of the LMC.



LMC: intrinsic correlation

When all coregionalization matrices are proportional to a matrix B:

Bu = au B

we have an intrinsically correlated LMC:

Γ(h) = B
S

∑
u=0

au gu(h) = B γ(h)

In practice, with intrinsic correlation, the eigenanalysis of the different
Bu will yield:

different sets of eigenvalues,
but identical sets of eigenvectors.



Regionalized Multivariate Data Analysis

With intrinsic correlation:

The factors are autokrigeable,
i.e. the factors can be computed
from a classical MDA on
the variance-covariance matrix V ∼= B
and are kriged subsequently.

With spatial-scale dependent correlation:

The factors are defined on the basis of
the coregionalization matrices Bu
and are cokriged subsequently.

Need for a regionalized multivariate data analysis!



Regionalized PCA ?

Variables Zi (x)

↓
Intrinsic Correlation ? no−→ γij (h) = ∑

u
Bu gu(h)

↓ yes ↓

PCA on B PCA on Bu

↓ ↓
Transform into Y Cokrige Y ?

u0p0
(x)

↓ ↓

Krige Y ?
p0

(x) −→ Map of PC
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Geostatistical filtering:
Golfe du Lion SST



Modeling of spatial variability
as the sum of a small-scale and a large-scale process

SST on 7 june 2005
The variogram of the Nar16 im-
age is fitted with a short- and a
long-range structure (with geo-
metrical anisotropy).

Variogram of SST

The small-scale components
of the NAR16 image

and
of corresponding MARS ocean-model output

are extracted by geostatistical filtering.



Geostatistical filtering
Small scale (top) and large scale (bottom) features
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NAR16 image MARS model output
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Zoom into NE corner

Bathymetry
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Cokriging in NE corner
Small scale (top) and large scale (bottom) components
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NAR16 image MARS model output
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Interpretation

To correct for these discrepancies between remotely sensed SST and
that provided by the MARS ocean model, the latter was thoroughly
revised in order better reproduce the path of the Ligurian current.
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Covariance structure



Intrinsic Correlation: Variogram Model

A simple model for the matrix Γ(h)
of direct and cross variograms γij(h) is:

Γ(h) =
[

γij(h)
]

= Bγ(h)

where B is a positive semi-definite matrix.

In this model all variograms are proportional
to a basic variogram γ(h):

γij(h) = bij γ(h)



Codispersion Coefficients

A coregionalization is intrinsically correlated
when the codispersion coefficients:

ccij(h) =
γij(h)√

γii(h)γjj(h)

are constant, i.e. do not depend on spatial scale.

With the intrinsic correlation model:

ccij(h) =
bij γ(h)√
bii bjj γ(h)

= rij

the correlation rij between variables is
not a function of h.



Codispersion Coefficients

A coregionalization is intrinsically correlated
when the codispersion coefficients:

ccij(h) =
γij(h)√

γii(h)γjj(h)

are constant, i.e. do not depend on spatial scale.

With the intrinsic correlation model:

ccij(h) =
bij γ(h)√
bii bjj γ(h)

= rij

the correlation rij between variables is
not a function of h.



Intrinsic Correlation: Covariance Model

For a covariance function matrix the model becomes:

C(h) = Vρ(h)

where
V =

[
σij

]
is the variance-covariance matrix,

ρ(h) is an autocorrelation function.

The correlations between variables do not depend on the spatial
scale h, hence the adjective intrinsic.
In the intrinsic correlation model the multi-variate variability is
separable from the spatial variation.



A Test for Intrinsic Correlation

1 Compute principal components for the variable set.
2 Compute the cross-variograms between principal components.

In case of intrinsic correlation, the cross-variograms
between principal components are all zero.



A Test for Intrinsic Correlation

1 Compute principal components for the variable set.
2 Compute the cross-variograms between principal components.

In case of intrinsic correlation, the cross-variograms
between principal components are all zero.



Cross variogram: two principal components
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=⇒ The intrinsic correlation model is not adequate!
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Cokriging



Multivariate Kriging

Kriging is optimal linear unbiased prediction applied to random
functions in space or time with the particular
requirement that their covariance structure is known.
−→ Multivariate case: co-kriging

Covariance structure: covariance functions (or variograms,
generalized covariances) for a set of variables.



Ordinary cokriging

Estimator: Z ?
i0,OK(x0) =

N

∑
i=1

ni

∑
α=1

w i
α Zi(xα)

constrained weights: ∑
α

w i
α = δi ,i0

valid for variograms,
nonstationary phenomenon without drift.



Data configuration & Cokriging neighborhood

Data configuration:
sites of different types of measurements
in a spatial/temporal domain.

Are sites shared by different measurement types
— or not?

Neighborhood:
a subset of data used in cokriging.

How should the cokriging neighborhood be defined?

What are the links with the covariance structure?



Configurations: Iso- and Heterotopic Data

primary data secondary data

Heterotopic data

Sample sites

may be different

covers whole domain

Sample sites 

are shared
Isotopic data

Secondary data

Dense auxiliary data



Configuration: isotopic data
Auto-krigeability

A random function Z1(x) is auto-krigeable (self-krigeable), if the
cross-variograms of that variable with the other variables are all
proportional to the direct variogram of Z1(x):

γ1j(h) = a1j γ11(h) for j = 2, . . . ,N

Isotopic data: auto-krigeability means that the cokriging boils
down to the corresponding kriging.
If all variables are auto-krigeable, the set of variables is
intrinsically correlated, i.e. the multivariate variation is
separable from the spatial variation.



Configuration: dense auxiliary data
3 cokriging neighborhoods

H HCB

H

H

primary data

target point

secondary data
A

A: neighborhood using all data
B: multi-collocated neighborhood
C: collocated neighborhood



Neighborhood: all data

H

primary data

target point

secondary data

H

Very dense auxiliary data (e.g. remote sensing): a priori large
cokriging system, potential numerical instabilities. Ways out:

moving neighborhood,
multi-collocated neighborhood,
sparser cokriging matrix: covariance tapering.



Neighborhood: multi-collocated

H

H

primary data

target point

secondary data

Multi-collocated cokriging equivalent to cokriging with all data
when there is proportionality in the cross-covariance model,
for all forms of cokriging: simple, ordinary, universal



Neighborhood: multi-collocated
Bivariate example: proportionality in the covariance model

Cokriging with all data is equivalent to cokriging with a
multi-collocated neighborhood for a model with a
covariance structure is of the type:

C11(h) = p2 C(h) + C1(h)

C22(h) = C(h)

C12(h) = p C(h)

where p is a proportionality coefficient.

RIVOIRARD (2004) studies various examples of this kind, examining
bivariate and multi-variate coregionalization models in connection
with different data configurations and neighborhoods, among them
the dislocated neighbohood.
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Appendix



Eddie tracking with circlets
by Hervé CHAURIS www.geophy.ensmp.fr

www.geophy.ensmp.fr


Detection of circular structures

Taking account of the band limited aspect of the data:



Circlets applied to Skagerrak

Preprocessing (despiking,
transfer on regular grid);
image gradient;
circlet decomposition;
coefficient thresholding;
Image reconstruction.



Methodology



Circlets applied to Skagerrak
Tracking the position and diameter of an eddy-like structure



Statistics & Machine Learning • Manchester, July 2009

Introduction Geostatistical Model Covariance structure Cokriging

Potential of circlets

Preprocessing can be done by geostatistical filtering
Simple and fast circlet transform
(CPU cost of a few 2-D FFTs)
Deal with edge effects
How to integrate eddie tracking into a data assimilation
procedure?
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