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Carbon Cycle
Friedlingstein et al. 2006 - uncalibrated GCM predictions
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Carbon feedbacks

Terrestrial ecosystems currently absorb a considerable fraction of
anthropogenic carbon emissions.

However, the fate of this sink is highly uncertain due to insufficient
knowledge about key feedbacks.

In particular we are uncertain about the sensitivity of soil respiration
to increasing global temperature.

GCM predictions don’t even agree on the sign of the net terrestrial
carbon flux.

The figure showed inter-model spread in uncalibrated GCM model
predictions.

How much additional spread is there from parametric (as opposed to
model structural) uncertainty?

Can calibration reduce some of the spread compared to a pile of
uncalibrated models?
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Calibration
The inverse problem

Most models are forwards models, i.e., specify parameters θ and i.c.s and
the model η() generates output D. Often, we are interested in the
inverse-problem, i.e., observe data, want to estimate parameter values.
Different terminology:

Calibration

Data assimilation

Parameter
estimation

Inverse-problem

Bayesian
inference
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Computer experiments
Distinguish between two types of input:

t = control parameters, e.g., time, location, force etc.
θ = calibration parameters, e.g., gravity, viscosity, respiration
sensitivity etc.

◮ Physical experiments: nature specifies θ
◮ Computer experiments: we must specify θ
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Distinguish between two types of input:

t = control parameters, e.g., time, location, force etc.
θ = calibration parameters, e.g., gravity, viscosity, respiration
sensitivity etc.

◮ Physical experiments: nature specifies θ
◮ Computer experiments: we must specify θ

We take the ’best-input’ approach:

θ has a best-fitting value, θ̂, in the sense of representing the data
faithfully according to the error structure specified.

We are not usually ignorant about θ, although θ̂ will not necessarily
correspond to true physical values.

Aim: find the posterior distribution of the calibration parameter (θ) given
the computer model (η) and the field data (Dfield)

posterior ∝ prior × likelihood

π(θ|Dfield, η) ∝ π(θ)P(Dfield|η, θ)
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UVic Earth System Climate Model
With Nathan Urban (Penn State)

UVic ESCM is an intermediate complexity model with a general
circulation ocean and dynamic/thermodynamic sea-ice components
coupled to a simple energy/moisture balance atmosphere. It has a
dynamic vegetation and terrestrial carbon cycle model (TRIFFID) as well
as an inorganic carbon cycle.

Inputs: Q10 = soil respiration sensitivity to temperature (carbon
source) and Kc = CO2 fertilization of photosynthesis (carbon sink).

Output: time-series of CO2 values, cumulative carbon flux
measurements, spatial-temporal field of soil carbon measurements.
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UVic Earth System Climate Model
With Nathan Urban (Penn State)

UVic ESCM is an intermediate complexity model with a general
circulation ocean and dynamic/thermodynamic sea-ice components
coupled to a simple energy/moisture balance atmosphere. It has a
dynamic vegetation and terrestrial carbon cycle model (TRIFFID) as well
as an inorganic carbon cycle.

Inputs: Q10 = soil respiration sensitivity to temperature (carbon
source) and Kc = CO2 fertilization of photosynthesis (carbon sink).

Output: time-series of CO2 values, cumulative carbon flux
measurements, spatial-temporal field of soil carbon measurements.

The observational data are limited, and consist of 60 measurements
Dfield :

40 instrumental CO2 measurements from 1960-1999 (from Mauna
Loa)

17 ice core CO2 measurements

3 cumulative ocean carbon flux measurements
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Calibration
The aim is to combine the physics coded into UVic with the empirical
observations to learn about the carbon feedbacks.
However, UVic takes approximately two weeks to run for a single input
configuration. Consequently, all inference must be done from a limited
ensemble of model runs.

48 member ensemble, grid design D, output Dsim (48 × n).
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Model runs and data
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Gaussian Process Emulators
We build emulators (meta-models) to account for code uncertainty

At untried inputs, we don’t know the model’s output.
Assume a priori that η(·) ∼ GP(µ(·), c(·, ·)) for some mean function
µ(·) and covariance function c(·, ·), and then condition this on the
observed ensemble Dsim.
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Multivariate Emulation
Higdon et al. 2008

How can we deal with multivariate ouput?

Build independent or separable multivariate emulators,

Outer product emulators,

Linear model of coregionalization?
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Multivariate Emulation
Higdon et al. 2008

How can we deal with multivariate ouput?

Build independent or separable multivariate emulators,

Outer product emulators,

Linear model of coregionalization?

Instead, if the outputs are highly correlated we can reduce the dimension
of the data by projecting the data onto some lower dimensional manifold
Ypc .
We can use any dimension reduction technique as long as

we can reconstruct to the original output space

we can quantify the reconstruction error.
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We can then emulate the function that maps the input space Θ to the
reduced dimensional output space Ypc , i.e., ηpc(·) : Θ → Ypc

Θ Y

Ypc

η(·)

PCA
PCA−1ηpc(·)
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Principal Component Emulation (EOF)
We use principal component analysis to project the data onto a lower
dimensional manifold, as it is the optimal linear projection (in terms of
minimizing reconstruction error).

1 Centre and scale Dsim so that each column has mean 0 and variance
1. Scaling the columns makes specification of prior distributions for
the emulators simpler.

2 Find the singular value decomposition of Dsim.

Dsim = UΓV ∗.

Γ contains the singular values (eigenvalues), and V the principal
components (eigenvectors).

3 Decide on the dimension of the principal subspace, n∗ say, and throw
away all but the n∗ leading principal components. An orthonormal
basis for the principal subspace is given by the first n∗ columns of V ,
denoted V1. Let V2 be the matrix of discarded columns.

4 Project Dsim onto the principal subspace to find Dpc
sim

= DsimV1
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PCA emulation

We then emulate the reduced dimension model

ηpc (·) = (η1
pc (·), . . . , ηn∗

pc (·)).

Each component ηi
pc will be uncorrelated (in the ensemble) but not

necessarily independent. We use independent Gaussian processes for
each component, which seems to be an adequate approximation in
all the examples we’ve looked at.

The output can be reconstructed from the principal component space
to the original full space, accounting for reconstruction error, by a
simple matrix multiplication and modelling the discarded components
as Gaussian noise with variance equal to the corresponding
eigenvalue:

η(θ) = V1ηpc (θ) + V2diag(Λ)

where Λi ∼ N(0,Γii ) (Γii = i th eigenvalue).
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Comments

This approach (PCA emulation) requires that the outputs are highly
correlated.

We are assuming that the output Dsim is really a linear combination
of a smaller number of variables,

η(θ) = v1η
1
pc (θ) + . . . + vn∗η

n∗

pc (θ)

which may be a reasonable assumption in many situations, eg,
temporal spatial fields.

Although PCA is a linear method, the method can be used on highly
non-linear models as we are still using non-linear Gaussian processes
to map from Θ to Ypc .

This method accounts for code uncertainty and automatically
accounts for the reconstruction error caused by reducing the
dimension of the data.
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PC Plots
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GP Choices
Choice of regressors

We use products of Legendre polynomials on [−1, 1] (Rougier 2007)
- an orthonormal basis. We allow up to quadratic terms
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Choice of regressors
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Covariance function

Matern with ν = 5/2 ⇒ twice differentiable output
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Give τ a Γ(1.5, 6) prior distribution in all the principal component
emulators.

R.D. Wilkinson (University of Sheffield) MUCM Manchester 2009 16 / 24



GP Choices
Choice of regressors

We use products of Legendre polynomials on [−1, 1] (Rougier 2007)
- an orthonormal basis. We allow up to quadratic terms

Covariance function

Matern with ν = 5/2 ⇒ twice differentiable output

c5/2(r) = τ

(

1 +

√
5r

l
+

5r2

3l2

)

exp

(

−
√

5r

l

)

Give τ a Γ(1.5, 6) prior distribution in all the principal component
emulators.

Length scales l

Estimate and fix the length scales using their maximum likelihood
estimates.

R.D. Wilkinson (University of Sheffield) MUCM Manchester 2009 16 / 24



GP Choices
Choice of regressors

We use products of Legendre polynomials on [−1, 1] (Rougier 2007)
- an orthonormal basis. We allow up to quadratic terms

Covariance function

Matern with ν = 5/2 ⇒ twice differentiable output

c5/2(r) = τ

(

1 +

√
5r

l
+

5r2

3l2

)

exp

(

−
√

5r

l

)

Give τ a Γ(1.5, 6) prior distribution in all the principal component
emulators.

Length scales l

Estimate and fix the length scales using their maximum likelihood
estimates.

Alternative:

τ and l are often not both identifiable. Instead, fix l using Addler’s
theorem by considering the expected number of up-crossings by the
residual.
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Diagnostics
One-step-ahead (OSA) and leave-one-out (LOA) for PC1

Order the ensemble according to θ1.
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Emulator Diagnostics
LOO cross-validation plots, using 10 PCs (99.2% of variance explained)

315 325 335

31
5

32
5

33
5

CO2_1960

True value

P
re

di
ct

ed
 V

al
ue

320 330 340

31
5

32
5

33
5

CO2_1962

True value

P
re

di
ct

ed
 V

al
ue

320 330 340 350

32
0

33
0

34
0

35
0

CO2_1966

True value

P
re

di
ct

ed
 V

al
ue

325 335 345

32
0

33
0

34
0

35
0

CO2_1969

True value

P
re

di
ct

ed
 V

al
ue

325 340 355

32
5

33
5

34
5

35
5

CO2_1972

True value

P
re

di
ct

ed
 V

al
ue

330 345 360

33
0

35
0

CO2_1975

True value

P
re

di
ct

ed
 V

al
ue

340 360

34
0

36
0

CO2_1979

True value

P
re

di
ct

ed
 V

al
ue

340 360 380

34
0

36
0

38
0

CO2_1983

True value

P
re

di
ct

ed
 V

al
ue

350 370 390

34
0

36
0

38
0

CO2_1987

True value

P
re

di
ct

ed
 V

al
ue

350 370 390

35
0

37
0

39
0

CO2_1991

True value

P
re

di
ct

ed
 V

al
ue

360 390 420

35
0

37
0

39
0

41
0

CO2_1995

True value

P
re

di
ct

ed
 V

al
ue

360 390 420
36

0
40

0

CO2_1999

True value

P
re

di
ct

ed
 V

al
ue

R.D. Wilkinson (University of Sheffield) MUCM Manchester 2009 18 / 24



Calibration Framework
Kennedy and O’Hagan 2001

We have two sources of information:

Computer model η(t, θ)
◮ with a limited ensemble of model runs Dsim = {η(ti , θi ), i = . . .}.

Field data Dfield: a collection of noisy measurements of reality at a
variety of t values.
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Calibration Framework
Kennedy and O’Hagan 2001

We have two sources of information:

Computer model η(t, θ)
◮ with a limited ensemble of model runs Dsim = {η(ti , θi ), i = . . .}.

Field data Dfield: a collection of noisy measurements of reality at a
variety of t values.

Many assimilation approaches assume that measurements represent the
computer model run at its best input value plus independent random
noise. If the model is wrong, this is assumption is false. At best, we
observe reality plus independent random noise.
Instead, include an additional model error term.

Measurement error ǫ

Model discrepancy δ(t)
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Calibration Framework
Assume that reality ζ(t) is the computer model run at the ‘true’ value of
the parameter θ̂ plus model error:

ζ(t) = η(t, θ̂) + δ(t)
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Calibration Framework
Assume that reality ζ(t) is the computer model run at the ‘true’ value of
the parameter θ̂ plus model error:

ζ(t) = η(t, θ̂) + δ(t)

We observe reality plus noise:

Dfield (t) = ζ(t) + ǫ(t)

so that
Dfield (t) = η(t, θ̂) + δ(t) + ǫ(t).
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Calibration Framework
Assume that reality ζ(t) is the computer model run at the ‘true’ value of
the parameter θ̂ plus model error:

ζ(t) = η(t, θ̂) + δ(t)

We observe reality plus noise:

Dfield (t) = ζ(t) + ǫ(t)

so that
Dfield (t) = η(t, θ̂) + δ(t) + ǫ(t).

We then aim to find π(θ̂|Dsim,Dfield ).

θ̂ η(θ̂) ζ Dfield

δ ǫ
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Model Discrepancy
The calibration framework used is:

Dfield (t) = η(θ, t) + δ(t) + ǫ(t)

The model predicts the underlying trend, but real climate fluctuates
around this. We model

discrepancy as an AR1 process: δ(0) ∼ N(0, σ2
δ ), and

δ(t) = ρδ(t − 1) + N(0, σ2
δ ).

Measurement error as heteroscedastic independent random noise
ǫ(t) ∼ N(0, λ(t)).
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MCMC
Metropolis-within-Gibbs Sampler

Prior distributions: ρ ∼ Γ(5, 1), σ2
δ ∼ Γ(4, 0.6), σ2 ∼ Γ(1.5, 6),

θ = (Q10,Kc), Q10 ∼ U[1, 4], Kc ∼ U[0.25, 1.75].
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MCMC
Metropolis-within-Gibbs Sampler

Prior distributions: ρ ∼ Γ(5, 1), σ2
δ ∼ Γ(4, 0.6), σ2 ∼ Γ(1.5, 6),

θ = (Q10,Kc), Q10 ∼ U[1, 4], Kc ∼ U[0.25, 1.75].
We can then use a Metropolis-within-Gibbs sampler to find the posterior
distribution

π(θ, σ2, ρ, σ2
δ |Dfield,Dsim)

using the following steps

π(σ2|θ, ρ, σ2
δ ,Dsim,Dfield) - Gibbs update

π(θ|σ2, ρ, σ2
δ ,Dsim,Dfield) - MH step

π(ρ, σ2
δ |θ, σ2,Dsim,Dfield) - MH step

Reparameterizing in terms of log(ρ) and using a block update for ρ and
σ2

δ helps with the convergence.

R.D. Wilkinson (University of Sheffield) MUCM Manchester 2009 22 / 24



Results
Posterior distributions when using uniform prior distributions (left plot)
for both parameters, and when using an observation based prior for Q10

(right plot).

At low Kc there is positive correlation between Kc and Q10, but this
reverses to negative correlation at high Kc - a result of non-linearities in
the response of carbon fertilization to CO2 and respiration to temperature.
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Conclusions

For highly correlated multivariate output principal component
emulation can work well and is computationally cheap and easy to
implement.

A large number of output dimensions can be reduced to a smaller
number of principal component scores which can then be emulated,
accounting for any error in the compression.

Given the model, forcing data, constraints and uniform priors, high
values of Q10 are excluded but no value of Kc can be ruled out.

Acceptable parameter combinations produce similar responses of the
carbon cycle during the years 1800-1999 but produce widely
divergent future predictions.
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