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1 Introduction

Some of the most complex models routinely run are numerical weather pre-
diction models. These models are based on a discretisation of a coupled set
of partial differential equations (the dynamics) which govern the time evolu-
tion of the atmosphere, described in terms of temperature, pressure, velocity,
etc, together with parameterisations of physical processes such as radiation
and clouds [3]. These dynamical models typically have state vectors with di-
mension O(106) or more. A key issue in numerical weather prediction is the
inference of the state vector, given a set of observations, which is referred to
as data assimilation. Most modern data assimilation methods can be seen
in a sequential Bayesian setting as the estimation of the posterior distribu-
tion of the state, given a prior distribution of the state that is derived from
the numerical weather prediction model, and a likelihood that relates the
observations to the state [4].

In general the prior distribution is approximated as a space only Gaus-
sian process, the observations are often given Gaussian likelihoods, and thus
inference of the posterior proceeds using well known Gaussian process meth-
ods [6]. It is possible to view almost all data assimilation methods as ap-
proximations to the Kalman filter / smoother. Much early work in data
assimilation focussed on the static case where the prior distribution was as-
sumed to have a climatological covariance structure whose form was dictated

∗University of Southampton
†Aston University
‡Technical University Berlin

1



in many cases from the model dynamics, and a mean given by a determin-
istic forecast from the previous data assimilation cycles posterior mean [3].
At each time step, the covariance of the state was thus ignored and only
the mean was propagated forward in time. Recently much work has been
done to address the issue of the propagation of the uncertainty at initial
time through the non-linear model equations. The most popular method is
called the ensemble Kalman filter [5], and is a Monte Carlo approach. The
basic idea is very simple:

1. take a sample from your prior distribution (in practice a sample size
O(100) or less is used, even for high dimensional systems);

2. propagate each sample, integrating the model equations deterministi-
cally to produce a forecast ensemble;

3. use the forecast ensemble to estimate the forecast mean and covariance
(avoid rank deficiency problems by localising this, which also minimises
the effect of sampling noise);

4. update each ensemble member carefully using a Kalman filter derived
update, so they are a sample from the corresponding posterior distri-
bution and iterate to 2.

The ensemble approach has many advantages, but it is suboptimal from
many aspects, for example the sampling noise can be large and uncontrolled,
it is not trivial to incorporate non-Gaussian likelihoods, it requires several
model integrations and it is impractical to implement as a smoother. See
Appendix A for more information about the Kalman filter link.

In the following we present some initial results from the VISDEM project,
where we seek a variational Bayesian treatment of the dynamic data assimi-
lation problem which builds upon our variational Bayesian Gaussian process
treatment of the static data assimilation problem [1]. In particular we focus
on the issue of defining a Gaussian process approximation to the temporal
evolution of the solution of a general stochastic differential equation with
additive noise.

2 Modelling stochastic differential equations

We assume that the variables divide into two groups

x =

(
x‖

x⊥

)
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such that the noise level is σ‖ on the x‖ variables assumed to be k of the n,
while for the remainder it is σ⊥.

Assuming the noise to be equal variance and uncorrelated we have

∆x‖k = x‖k+1 − x‖k = f‖(xk)∆t + σ‖z‖
√

∆t,

∆x⊥k = x⊥k+1 − x⊥k = f⊥(xk)∆t + σ⊥z⊥
√

∆t

where z‖ (z⊥) is a vector of dimension k (n− k) drawn from a multivariate
Gaussian with identity covariance. Hence, the true probability of a sequence
{xi}N

i=1 is given by

P
({xi}N

i=1

)
=

N−1∏

i=1

1
(2πσ‖2∆t)k/2(2πσ⊥2∆t)(n−k)/2

exp

(
−‖∆x‖i − f‖(xi)∆t‖2

2σ‖2∆t
− ‖∆x⊥i − f⊥(xi)∆t‖2

2σ⊥2∆t

)
.

We will approximate this distribution by a distribution Q which we assume
has the following form

Q
({xi}N

i=1

)
=

N−1∏

i=1

1
(2πσ‖2∆t)k/2(2πσ⊥2∆t)(n−k)/2

exp

(
−‖∆x‖i − (A‖

i xi + b‖i )∆t‖2

2σ‖2∆t
− ‖∆x⊥i − (A⊥

i xi + b⊥i )∆t‖2

2σ⊥2∆t

)
,

where the matrices A‖
i , A⊥

i and vectors b‖i , b⊥i are parameters that will be
adjusted to minimise the KL divergence KL(Q‖P ) between the two distri-
butions.

We present here an approximation of the exact optimisation of the KL
divergence that extends the Kalman filter approach. The detailed deriva-
tions are given in Appendix B. We summarise the results here.

If we define

Ai = −〈(bi − f(xi))x′i〉〈xix′i〉−1 = A(mi,Σi)
and bi = 〈f(xi)〉 −Ai〈xi〉 = b(mi,Σi),

where averages are over the Gaussian approximation at stage i with mean
mi and covariance Σi. Taking limits as the interval tends to zero we obtain
differential equations for these quantities which are now all functions of t:

dm
dt

= A(m,Σ)m + b(m,Σ) = 〈f(x)〉,
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and

dΣ
dt

= diag(σ) + A(m,Σ)Σ + ΣA(m,Σ)′

= diag(σ) +
〈

∂f(x)
∂x

〉
Σ + Σ

〈
∂f(x)
∂x

〉′
,

These equations define the evolution of our approximation of the Q process.

3 Discussion

The final version of the paper will present results for a Gaussian process with
the covariance function determined by the approximation of the process Q.
A discussion of how the kernel can be obtained from the above computations
is included in Appendix D.
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A Link to the Kalman Filter

A standard approach for modelling dynamical systems with additive Gaus-
sian measurement noise is the Kalman Filter (KF) [2]. When the system
is nonlinear, one of its variants, for example the extended Kalman Filter
(EKF), can be used. KF and EKF are concerned with propagating the two
first moments of the filtering distribution p(xi+1|y0:i+1), which are given by

x̄i+1 = E{xi|y0:i+1}, (1)

S̄i+1 = E{(xi − x̄i+1)(xi+1 − x̄i+1)T|y0:i+1}, (2)

where y0:i+1 ≡ {y0, . . . ,yi+1} are the observations up to time ti+1. In order
to propagate these quantities, they proceed in two steps. In the prediction
step, the two moments are estimated given the observations up to time ti:

p(xi+1|y0:i) =
∫

p(xi+1|xi)p(xi|y0:i)dxi. (3)

This allows computing the predicted state E{xi+1|y0:i} and the predicted
state covariance E{(xi+1 − x̄i+1)(xi+1 − x̄i+1)T|y0:i}. Next, the correction
step consists in updating these estimates based on the new observation yi+1:

p(xi+1|y0:i+1) ∝ p(yi+1|xi+1)p(xi+1|y0:i), (4)

which leads to the desired conditional moments (1) and (2). KF is particu-
larly attractive for on-line learning as it is not required to keep trace of the
previous conditional expectations. Unfortunately, the integral in (3) is in
general intractable when the system is nonlinear or when the state transi-
tion probability p(xi+1|xi) is non-Gaussian. Therefore, approximations are
required.

A common approach is to linearize the system, which corresponds to
EKF. This leads to a Gaussian approximation of the transition probability.
Moreover, if the likelihood p(yi+1|xi+1) is assumed to be Gaussian, then the
filtering density is a Gaussian one at each ti+1. An alternative approach is to
resume the past information by the marginal Q(xi+1) and make predictions
as follows

p(xi+1|y0:i) = N (xi+1|mi+1,Σi+1), (5)

where

mi+1 = mi + (Ami + bi)∆t (6)
Σi+1 = Σi + (2AΣi + diag{σ})∆t. (7)
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This approximation is expected to be better than EKF, as the parameters A
and b of the linear approximation are adjusted at each iteration. If we fur-
ther assume that the likelihood p(yi+1|xi+1) is of the form N (yi+1|xi+1,R),
then the correction step (4) is given by

p(xi+1|y0:i+1) = N (yi+1|x̄i+1, S̄i+1), (8)

with

x̄i+1 = S̄i+1(Σ−1
i+1mi+1 + R−1yi+1), (9)

S̄i+1 = (Σ−1
i+1 + R−1)−1. (10)

Note that in this approach, only the filtering density (and its associated
moments) are propagated through time. In contrast, GP framework allows
us to define a distribution over the entire function space (i.e., over time). It
is expected that this will have a smoothing effect and will lead to a better
tracking of the state transitions.

B Approximation of KL divergence

If we use the variable X to denote the complete sequence {xi}N
i=1, we can

compute this as

KL(Q‖P ) = EX∼Q

[
log

Q(X)
P (X)

]

=
N−1∑

i=1

EX∼Q

[
log

Q(xi+1|xi)
P (xi+1|xi)

]

=
N−1∑

i=1

∫
dxiQ(xi)

∫
dxi+1Q(xi+1|xi)

[
‖∆x‖i − f‖(xi)∆t‖2 − ‖∆x‖i − (A‖

i xi + b‖i )∆t‖2

2σ‖2∆t

+
‖∆x⊥i − f⊥(xi)∆t‖2 − ‖∆x⊥i − (A⊥

i xi + b⊥i )∆t‖2

2σ‖2∆t

]

=
N−1∑

i=1

∫
dxiQ(xi)

[
∆t

2σ‖2
‖(A‖

i xi + b‖i )− f‖(xi)‖2

+
∆t

2σ⊥2
‖(A⊥

i xi + b⊥i )− f⊥(xi)‖2

]
,
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where the last equality follows from using the equality

Ex∼N(µ,σ)[(x− a)2] = σ2 + (µ− a)2

for the k components of the first vector and n−k components of the second.
In order to minimise the KL divergence, we must take the derivative

with respect to the parameters, set to zero and solve. We obtain

2A‖
i 〈xix′i〉+ 2〈(b‖i − f‖(xi))x′i〉 = 0

and 2(A‖
i 〈xi〉+ b‖i − 〈f‖(xi)〉) = 0, and

2A⊥
i 〈xix′i〉+ 2〈(b⊥i − f⊥(xi))x′i〉 = 0

and 2(A⊥
i 〈xi〉+ b⊥i − 〈f⊥(xi)〉) = 0

where the angle brackets indicate expectations with respect to the marginal
distribution Q(xi), which is Gaussian with mean and covariance mi and Σi

respectively (note that these are over the full variable set). We obtain the
equations for the parameters as

Ai = −〈(bi − f(xi))x′i〉〈xix′i〉−1 = A(mi,Σi)
and bi = 〈f(xi)〉 −Ai〈xi〉 = b(mi,Σi),

where the matrix Ai is formed by concatenating A‖
i and A⊥

i and similarly
bi. The expressions for A(m,Σ) and b(m,Σ) can be given as

A(m,Σ)(Σ + mm′) = 〈f(x)x′〉 − bm′

b(m,Σ) = 〈f(x)〉 −Am.

Substituting b from the second equation in the first gives

A(m,Σ)(Σ + mm′) = 〈f(x)x′〉 − 〈f(x)〉m′ + Amm′

⇒ A(m,Σ)Σ = 〈f(x)(x′ −m′)〉
=

〈
∂f(x)
∂x

〉
Σ, (11)

with the last equality following from an integration by parts. Writing ex-
pressions for the generation of xi+1 we have

x‖i+1 = x‖i + (A‖xi + b‖)∆t + σ‖u‖
√

∆t

x⊥i+1 = x⊥i + (A⊥xi + b⊥)∆t + σ⊥u⊥
√

∆t
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where u is an n-dimensional vector of independent zero mean Gaussian
variables with unit variance. We can combine these into the single equation

xi+1 = xi + (Axi + b)∆t + diag(σ)u
√

∆t

where diag(σ) denotes the diagonal matrix whose first k entries are σ‖ and
remaining entries σ⊥. We also know that xi is generated by a Gaussian with
mean mi and covariance Σi, so that

xi = mi +
√

Σiv

where v is a vector of zero mean unit variance Gaussian variables. Hence,
we obtain the following expression for xi+1

xi+1 = mi +
√

Σiv + Ami∆t + A
√

Σiv∆t + b∆t + diag(σ)u
√

∆t

Hence, we can compute

mi+1 = E[xi+1] = mi + Ami∆t + b∆t.

Taking the difference between means, dividing by ∆t and taking limits gives

dm
dt

= A(m,Σ)m + b(m,Σ) = 〈f(x)〉.

Next consider

Σi+1 = E
[
(xi+1 −mi+1)(xi+1 −mi+1)′

]

= E
[√

Σivv′
√

Σi

]
+ E

[√
Σivv′

√
ΣiA′∆t

]
+ E

[
A

√
Σivv′

√
Σi∆t

]

+diag(σ)∆t + O
(
(∆t)2

)

= Σi + ΣiA′∆t + AΣi∆t + diag(σ)∆t + O
(
(∆t)2

)

Taking the difference between means, dividing by ∆t and taking limits gives

dΣ
dt

= diag(σ) + A(m,Σ)Σ + ΣA(m,Σ)′

= diag(σ) +
〈

∂f(x)
∂x

〉
Σ + Σ

〈
∂f(x)
∂x

〉′
,

where we have made use of equation (11). The result of this computation
hold for all values of σ‖ and σ⊥, so that we can consider the case where we
let σ⊥ tend to zero. This allows us to encode quite general noise models and
covariances as the examples in Appendix C illustrate.
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C Examples of different noise models

General covariance If we wish to introduce noise with a known fixed co-
variance Σ0 as for example given by spatial relations between the lo-
cations of a climate grid model, we can double the number of variables
to n = 2k to obtain

∆x‖k = x‖k+1 − x‖k = z
√

∆t,

∆x⊥k = x⊥k+1 − x⊥k = f(x⊥k )∆t +
√

Σ0x
‖
k,

where z is k dimensional zero mean unit variance Gaussian random
variables and f(x⊥) is the system being studied.

Ornstein-Uhlenbeck process coloured noise Consider the two variable
stochastic differential equation:

∆yk = yk+1 − yk = −myk∆t + σz
√

∆t,

∆xk = xk+1 − xk = (f(xk) + yk)∆t,

where z is unit variance, zero mean Gaussian and f(·) is some possibly
non-linear function. We can approximate this system using the above
model with n = 2 and k = 1, σ‖ = σ and σ⊥ → 0. It gives a general
one-dimensional system driven by coloured noise.

D On the kernel

The problem is: Consider

dx = (Ax + b)dt + σdW

with W a standard Wiener process (assuming uncorrelated noise with equal
variance). The goal is to find the two time covariance kernel

K(t1, t2) = E
[
(x(t1)−m(t1))(x(t2)−m(t2))′

]

Let U be a solution to homogenous (nonstochastic) equation

dU
dt

= AU
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with U(0) = I. Then we can solve the inhomogenous equation as

x(t) = U(t)x(0) + σ

∫ t

0
U(t− s)dW(s)

The naive play with the differentials seems to be justified for the linear case!
We understand that the first part is nonrandom, the second part is of zero
mean. Hence, if we want the covariance, we just have

K(t1, t2) = σ2

∫ t1

0

∫ t2

0
U(t1 − s1)E[dW(s1)dW′(s2)]U(t2 − s2)

We also have E[dW(s1)dW(s2)′] = I δ(s1− s2)ds1ds2. So we should end up
with

K(t1, t2) = σ2

∫ min (t1,t2)

0
ds U(t1 − s)U′(t2 − s)

So far we have not used any properties of time independence. The simplifi-
cation that comes with a constant A is that we can immediately write

U(t) = eAt

For the time dependent case, finding explicit solutions is problematic by the
fact that matrices at different times may not commute, i.e. A(t)A(t′) 6=
A(t′)A(t). The time independent case gives (assume t1 < t2)

K(t1, t2) = σ2eA(t2−t1)

∫ t1

0
ds eA(t1−s)eA′(t1−s)

Now, the integral (with σ2) is precisely the kernel at equal times (the vari-
ance) and we have the final result.

K(t1, t2) = eA(t2−t1)K(t1, t1) for t1 < t2

and similar

K(t1, t2) = K(t2, t2)eA′(t1−t2) for t2 < t1
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