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Abstract

In this paper we study the active sensor management problem using continuous optimal
experimental design (OED) framework. This task comprises the determination of allocation
for a limited number of sensors over the spatial domain and the number of repetitive
measurements in these locations in order to improve the overall system performance. We
present a principled approach to active sensor management with repetitive measurements
for Gaussian Processes (GPs) using a generalised D-optimality criteria and soft margin
constrains. The resulting optimum of the convex optimization of the optimal experimental
design for GP is generally sparse, in the sense that measurements should be taken at only a
limited set of possible sensor locations. We demonstrate the use of our method on artificial
dataset.
Keywords: Optimal experimental design, Sensor Management, Gaussian Processes.

1. Introduction

It is intriguing that two such important problems in their own right such as the minimum
volume covering ellipsoid (MVCE) problem and D-optimal experimental design (OED), are
Lagrangian duals of each other. Many applications in control, system identification, vi-
sual/audio tracking, data mining, and of course experimental design, robust statistics and
novelty/outlier detection can be solved by (or reformulated as) the MVCE/OEP optimiza-
tion problem (Sun and Freund, 2004; Titterington, 1975). Active sensor management is
related to machine learning problems such as active learning (MacKay, 2003).

But many OED methods (Titterington, 1975; Guestrin et al., 2005) do not take into
account the following problems. Firstly, it is necessary to determine the solution of optimal
experimental design problem that is optimal for a given set of different models and prior
information about the probability of model occurrences. Secondly, the upper bound for the
number of repetitive measurements and cost of taking measurements in particular location
can vary over spatial domain. Finally, it is required that OED method uses the convex
optimisation problem.

The importance of OED and sensor management cannot be overestimated. Measure-
ments are often very expensive or dangerous, especially in military or industrial applications,
and a priori maximization of the information revealed by them can save large amounts of
money and/or reduce the risk being taken. However, thus far there has been no OED for-
mulation which handle aforementioned problems and is optimal if Gaussian Processes is
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used in the subsequent regression step. An important contribution of this paper is to fill
this gap. In this paper we propose to use the generalised D-optimal experimental design
with soft margin constrains.

2. Optimal experimental design

Let the data matrix be X = (x′1 x′2 · · · x`)
′, let y = (y1 y2 · · · y`) denotes the observations,

and let n = (n1 n2 · · · n`) denote the experimental noise. We assume the following model
for the data:

ys = fs(X) + n, where E{n} = 0, E{nn′} = σ2I, (1)
fs ∼ GP (ms,Ks), fs ∼ GP (ms,Ks + σ2I), s = 1, ..., S,

where the function fs is distributed as a GP with mean function ms and covariance (kernel)
function Ks, S is the number of considered models. We aim to estimate the regression
function fs. For convenience and without loss of generality, we will assume σ2 to be equal
to 1 in this paper.

OED is concerned with the optimal selection of the data points xi on the grid (out
of a set of such data points) at which the model should be sampled, in order to optimize
some measure of performance of the estimator of the weight vector βi,s of the s-th model
fs(x) =

∑
i βi,sks(xi,x).

3. Proposed optimisation problem

For the given set of kernels Ks, the matrix Λ and the weights wi and the parameter γ, we
propose the following formulation:

α∗γ = argminα −
S∑

s=1

ws log det (AΛKsΛA + γI) , (2)

s.t. a′a ≤ 1,

0 ≤ a ≤
√

1
ν`

e,

w′e = 1, w ≥ 0. (3)

where the diagonal matrix A, with Aii = ai , √
αi ≥ 0, such that (with a = (a1 a2 · · · an)′)

from e′α = 1 we have that a′a = 1, α define the solution of the continuous OED
problem (Titterington, 1975), Ks = {ks(xi,xj)}|(i=1,...,`, j=1,...,`), the given matrix Λ =
diag{λ1, ..., λ`} defines cost of taking measurements in different locations, ν is the upper
bound for the number of repetitive measurements (ν can be different for the different sensor
locations). If the cost of taking measurements in different locations is the same we can omit
the matrix Λ.

4. Experiments

We have to point out one technicality of our method we have not discussed so far. Because
of the relaxation step we used in our derivation, the design is not discrete, meaning that the
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weights αi are not exactly equal to integer values Ni (the number of repetitive measurements
in ith sensor location) divided by N (the total number of measurements or experiments).
In order to derive a discrete design {Ni} from a continuous design vector α, we propose to
regard α as a probability distribution over the different data points xi (note that α′e = 1),
and randomly sample N times from this distribution. This yields an empirical (and discrete)
approximation N̂i

N for αi, if N̂i samples are at the ith position. In our experiments, we
computed 100 such random discrete approximations, and kept the discrete design achieving
the lowest cost according to (2) with αi = N̂i

N . In our experiment S = 1, w1 = 1 and
Λ = diag{1, .., 1}.

To make an objective evaluation possible, we considered the sinc function (on the inter-
val [−4, 4], discretized with data points 0.1 apart from each other), and performed kernel
ridge regression based on the data xD,i and yD,i = sinc(xD,i) + ni with nD,i Gaussianly
distributed random noise with standard deviation 0.2. A Gaussian kernel with kernel width
ρ = 0.5 is used. In this way objective performance measures according to how well the
regression function approximates the target sinc function can be computed. We carried out
experiments comparing the design XD found by our method, with a design where the de-
sign points are uniformly spaced, and with a design where the design points are uniformly
randomly sampled from the domain. The experiments are summarized in Figure 1. We
can conclude that our approach results in a considerable improvement as compared to the
random and the uniform designs, especially for larger sample sizes N (which may be due
to the fact that for larger sample sizes the discrete design is a better approximation of the
continuous one).

5. Conclusions

We have investigated the sensor management problem based on D-optimal experimental
design. We derived the regularized version based on the subsequent use of kernel ridge
regression or GPs as an estimation technique for the regression weight vector. We believe
that the presented nonparametric approach is likely to prove a very useful alternative to
parametric approaches.
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Figure 1: Top left (γ = 0.01), top right (γ = 0.1) and bottom left (γ = 1) pictures: the
average 2-norm (three highest curves), ∞-norm (three middle curves) and 1-norm
errors (three lowest curves) over the interval [−4, 4], as a function of the number
of data points in the design, and this for random (dash-dotted lines), uniform
(dashed lines), and optimal designs as computed by our method (full lines). For
each of the sample sizes, the average error over 100 random noise sequences nD

is shown, and with 100 different random designs for the random design error
curves (the uniform and optimal designs are fixed). Clearly, all error measures
decrease as the sample size increases. Mainly for large sample sizes, the optimal
design outperforms the random and uniform designs. The bottom right figure
shows the sinc function on [−4, 4], the relaxed design vector αi as a function of
xi (dashed line), the values yD,i = sinc(xD,i)+nD,i according to a discrete design
{Ni} derived from this relaxed design (dots), and the resulting regression function
(dotted line). Here we used γ = 0.1.
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