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Abstract

We give another success story of using kernel-based methods to
solve a difficult reinforcement learning problem, namely that of 3vs2
keepaway in RoboCup simulated soccer. Key challenges in keepaway
are the high-dimensionality of the state space (rendering conventional
grid-based function approximation like tilecoding infeasable) and the
stochasticity due to noise and multiple learning agents needing to co-
operate. We use approximate policy iteration with sparsified regular-
ization networks to carry out policy evaluation. Preliminary results
indicate that the behavior learned through our approach clearly out-
performs the best results obtained with tilecoding by Stone et al. [5].

1 The Keepaway problem

RoboCup is a multi-agent domain with two opposing teams of agents strug-
gling to beat the other one in a game of simulated soccer. Agents are
autonomous entities; they sense and act independently and asynchronously,
run as individual processes and cannot directly communicate. Each agent
only has a restricted view of the world (hidden states). In addition, random
noise affects both the agents sensors as well as their actuators (stochasticity).
State description consists of relative distances and angles to visible objects
in the world, such as the ball, other agents or fixed beacons for localization
(high dimensionality). And finally the agents must make their decisions in
real-time. These properties make RoboCup a more than worthy challenge
for current reinforcement learning (RL).
Here, we consider a subtask of the full problem, namely the 3vs2 keepaway

problem. In keepaway we have two smaller teams: one team (3 keepers)
must try to maintain possession of the ball as long as possible while staying
within a tight rectangular space. The other team (2 takers) tries to gain
possession of the ball. Stone et al. [5] formulated keepaway as RL benchmark
problem;1 the keepers must learn how to maximize the time they control
the ball (as a team!) against the team of opposing takers playing a fixed
strategy. However, each keeper only learns individually from its own (noisy)
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actions and its own (noisy) perceptions of the world. The decision-making
happens at an intermediate level using multi-step macro-actions; the keeper
currently controlling the ball must decide between holding the ball or passing
it to one of its two teammates. The remaining keepers automatically try to
position themselves such to best receive a pass. The immediate reward is the
time that passes between individual calls to the acting agent. The task is
episodic; it starts with the keepers controlling the ball and endures as long as
neither the ball leaves the region nor the takers succeed in gaining control.
The two central challenges to overcome is 1.) the high dimensionality of
the state space (each sensation consists of 13 measurements, see Fig. 1)
meaning that conventional approaches to function approximation, like grid-
based tilecoding, will have a hard time. And 2.) the stochasticity due to
noise and the uncertainty in control due to the multi-agent nature, meaning
that the dynamics of the environment are both unknown and cannot be
obtained easily. Hence we need model-free methods.
Stone et al. [5] successfully applied RL to keepaway, using the textbook ap-
proach with online Sarsa(λ) and tilecoding as underlying function approxi-
mator [6]. However, tilecoding is a local method and places parameters (i.e.
basis functions) regularly throughout the entire state space, such that the
number of parameters grows exponentially with the dimensionality. In [5]
this very serious shortcoming was adressed by exploiting problem-specific
knowledge of how the various state variables interact. In particular, each
state variable was considered independently from the rest. Here in this short
paper we will instead apply kernel-based methods which bypasses the expo-
nential growth of parameters and represents the solution through the data.
We demonstrate that we can learn using the full state information without
toning down anything.

2 Our methodology: tools and algorithms

Approximate policy evaluation. In reinforcement learning the goal is
to estimate the value function from observed transitions and rewards, which
is then used to derive good decisions. Here we use the framework of approx-
imate policy iteration, i.e. alternate between estimating the value function
for the current policy π (policy-evaluation) and deriving a new policy from
the approximation (policy-improvement). Other than in traditional func-
tion approximation the desired target values in policy-evaluation are not
directly known but must be inferred from the information contained in the
Bellman operator Tπ. Since we know that the true (unknown) value function
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is a fixed point under Tπ two possibilities are [3]: (1) the Bellman residual
minimization approach. Here we want to make small the magnitude of the
change when applying Tπ, i.e. we seek an approximation that minimizes
(in a regularized least-squares sense) the Bellman residuals. However, this
approach is really feasable only for deterministic environments, since else
we would need ’doubled samples’ [3]. The alternative choice we employ for
keepaway is (2) the least-squares fixed point approximation. Here we want
to make small the direction of the change when applying Tπ, i.e. we seek
an approximation that is invariant under application of Tπ followed by ’pro-
jection’ (in a regularized least-squares sense) into the space of approximate
value functions spanned by the currently selected basis functions.

Model-free learning with Q-values. Without explicit knowledge of the
underlying system’s dynamics we must estimate the augmented state-action
values (i.e. Q-values) in order to be able to determine the best action given
the state [3].

Regularization networks. We use a non-parametric kernel-based ap-
proach; the approximate Q-value function is represented as a sum of kernels
centered on the data. To carry out the ’projection’ during policy-evaluation
we minimize a regularization functional that in addition to minimizing the
squared approximation error also penalizes complexity. The resulting solu-
tion hence equals a regularization network (with suitable inputs and targets)
and is effectively the mean prediction obtained by GP-regression (without
predictive variance).

Subset of regressors and online selection. We use the subset of re-
gressors method, e.g. see [4], to approximate the full kernel using a much
reduced subset of basis functions. To select this subset we employ online
greedy selection, similar to [1, 2], that adds a candidate basis function based
on its distance to the span of the previously chosen ones. One improvement
is that we consider a supervised criterion for the selection of the relevant ba-
sis functions that takes into account the reduction of the cost in the original
learning task (here it is the related task of minimizing the Bellman-residuals)
in addition to reducing the error incurred from approximating the kernel.
Since the per-step complexity during training and prediction depends on
the size of the subset, making sure that no unnecessary basis functions are
selected ensures more efficient usage of otherwise scarce resources. This way
learning in real-time (a necessity for keepaway) becomes possible.
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3 Results and Discussion

Figure 1 shows the results we are able to achieve with our approach; due
to the lack of space we can’t describe the experiments in more detail. The
results are preliminary but seem to indicate that a kernel-based approach
is indeed superior to convential approaches like grid-based tilecoding, as far
as high-dimensional learning tasks in RL are concerned. Also see the very
comparable GPTD of Engel et al. in [2] and follow-up work.
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Figure 1: Left: Illustrating keepaway. The various lines and angles indicate
the 13 state variables making up each sensation. Right: Learning curves for
our approach. We plot training time (after interacting for 20 hours an agent
experiences roughly 50,000 state transitions) against the average time the
keepers are able to control the ball (quality of learned behavior).
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