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Abstract

We present a novel approach to image feature and scale detection
based on the fractional Brownian image model in which images are re-
alisations of a Gaussian random process on the plane. Image features
are points of interest usually sparsely distributed in images. We pro-
pose to detect such points and their intrinsic scale by detecting points
in scale-space that locally minimises the likelihood under the model.

1 Introduction

Following Marr’s paradigm [9] feature detection is the basis on which many
vision and image analysis algorithms build upon. The definition of what
constitutes an image feature is debatable but there is a common agreement
that it is either points or curves of interest where the image intensities have
a special geometry. Examples of curve-like features include edges formed by
abrupt contrast changes and ridges formed by bar- or valley-like intensity
structures. Examples of point features include T-junctions formed by two
edges crossing (usually caused by occluding objects), corners formed by two
edges meeting at a point, and blobs which are local extrema of the image in-
tensity function. Features have an intrinsic scale that describes their extend
in space, e.g. a blob has a certain width. In this paper we use the well-
known linear scale space theory [2] for describing the scale of local image
structure.

Various methods exist for doing feature detection, but due to space lim-
itations we only provide some references to related work [1, 7, 6, 5, 11, 8, 4].

The method we propose detects features and their intrinsic scale by find-
ing points in scale space with locally minimal probability under a stochastic
image model. Hence we propose a definition of features as points occurring
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rarely under a stochastic model of images. We use the covariance structure
of the fractional Brownian image model leading to a Gaussian process model
of images. Notice that contrary to other methods for feature detection we
do not include an explicit model of the features we want to detect.

2 Theoretical background

In order to describe local image geometry we use the scale space jet repre-
sentation [2, 3]. The scale space L : R

2
× R+ → R of an image f : R

2
→ R

is given by convolution with a Gaussian blurring kernel

L(x, y;σ) = (Gσ ∗ f)(x, y) (1)

where σ is the measurement scale and

Gσ(x, y) =
1

2πσ2
exp

(

−

x2 + y2

2σ2

)

. (2)

So-called scale normalised scale space derivatives may be computed by

Lxnym(x, y;σ) = σn+m

(

∂n+mGσ

∂xn∂ym
∗ f

)

(x, y) . (3)

The scale space k-jet at an image point is the vector of partial scale space
derivatives up to order k of the image intensity function at that point,

jσ(x, y) = (Lx, Ly, . . . , Lxnym)T (4)

where n+m = k. We disregard the zeroth order term since it does not carry
any relevant local geometric information.

In order to derive our Gaussian stochastic image model we start by con-
sidering the fractional Brownian image model [10]. The covariance matrix
of scale normalised jets of fractional Brownian images can be computed ana-
lytically (see [10]). In the following n1m1 and n2m2 indicates the derivation
order for both filters. The covariance is

Σ{σ,α}
nm = (−1)

n+m

2
+n2+m2

β(n − 1)!!(m − 1)!!

4πσ2−α(n + m)!!
Γ

(

n + m − α

2
+ 1

)

(5)

whenever both n = n1 + n2 and m = m1 + m2 are even integers, otherwise

Σ
{σ,α}
nm = 0. Double factorial is defined as n!! = n(n − 2)(n − 4) · · · . The α

parameter dictates the spatial correlation structure of the model and valid
choices are 1 < α < 3. Choosing α = 2 leads to the scale invariant Brownian
image model which is a Gaussian process with i.i.d. Gaussian increments
f(x1, y1)−f(x2, y2). The β constant describes the variance of the intensities
and is not of interest here.
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Fractional Brownian images are not in general Gaussian processes, but
we are only interested in the covariance of jets of this model and since we
discard the zeroth order term in the jet we effectively assume that images
are zero mean. Using only this information leads to a Gaussian assumption
on images and the probability density on jets

pα(jσ(x, y)) =
1

Z
exp

(

−

1

2
jT
σ (x, y)(Σ{σ,α})−1jσ(x, y)

)

(6)

where Z is a normalisation constant and the covariance Σ{σ,α} is given by
(5).

3 Feature and Scale Detection

We define features points as points of low probability of occurrence under the
fractional Brownian image model, i.e. minimal likelihood, and we propose
to detect the intrinsic scale in a similar way.

Our method can be summarised as follows: For a particular choice of α

find points in scale space which locally minimise the likelihood under the
model given by (6),

(x̂, ŷ, σ̂) = arg min
(x,y,σ)

pα(jσ(x, y)) . (7)

Minimising the likelihood is similar to the well-known feature and scale
detection method proposed by Lindeberg [7]. Lindeberg maximises so-called
measures of feature strength which are polynomials of image derivatives.
In our setting, −

1
2jT

σ (x, y)(Σ{σ,α})−1jσ(x, y) correspond to such a feature
strength, hence maximising this measure is equivalent to minimising the
likelihood.

4 Preliminary Results

As a preliminary demonstration of our method we include results of detecting
features on a synthetic double blob image. We applied our method to this
image using the 4th order jet and the Brownian image model α = 2. The
results are found in fig. 1. Our method detects the two blobs position and
scale correctly. Besides this it also detects the high scale edge surrounding
the blob (the two off centre dots at scale σ = 30).

5 Conclusion

We present a novel method for detecting image features and their intrinsic
scales. This is done by finding local minima in scale space of the likelihood
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Figure 1: (Left) Synthetic image of two blobs with scales σ = 2 and σ = 30.
(Right) Contour plot of the probability of the middle cross section of the
left image across scale. The four dots represents local minima.

of the image under the fractional Brownian image model. We presented
promising but preliminary results on a synthetic image. Obviously the next
step would be a thorough investigation on real natural images. There seems
to be a connection between the choice of α, order of jet, and which features
and scale we detect and we would like to investigate this further.
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