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Abstract
Log Gaussian processes (LGP) are an attractive manner to construct in-

tensity surfaces for the purposes of spatial epidemiology. The intensity sur-
faces are naturally smoothed by placing a GP prior over the relative log Pois-
son rate. In this work a fully independent training conditional (FITC) sparse
approximation is used to speed up GP computations. The sampling of the
latent values is sped up with transformations taking into account the approx-
imate conditional posterior precision.

1 Introduction

Log Gaussian processes (LGP) are an attractive way to construct intensity surfaces
for the purposes of spatial epidemiology (see, e.g., Richardson (2003) for review of
spatial models for point referenced data). The spatial correlations between areas are
included in an explicit and a natural way into the model via a covariance function.
The drawback of GP is the computational burden of the required covariance matrix
inversion. The computation time becomes prohibitive as the data amount increases
up to around a few thousand of cases, limiting the study either to very small areas
or a sparsely populated grid. To overcome the computational limitations a num-
ber of sparse approximations for GP have been suggested in the literature. Here
a fully independent training conditional (FITC) (Snelson and Ghahramani, 2006;
Quiñonero-Candela and Rasmussen, 2005) sparse approximation is used to speed
up GP computations.

In spatial epidemiology it is very important to have good estimates whether
the spatial variation is significant. To set a golden standard for the uncertainty esti-
mates, instead of using faster variational type approximations for the latent values
and point estimates for the hyperparameters, we integrate over both the hyperpa-
rameters and the latent values using Markov chain Monte Carlo methods (MCMC).
The sampling of the latent values is sped up with transformations taking into ac-
count the approximate conditional posterior precision. The sparse method is also
compared to a full GP approach with two moderate size datasets.

Some results depicting the spatial variations in the relative mortality risk in
Finland are illustrated.



2 Models and Methods

The spatial variations in relative mortality risk in a point referenced health-care
data are studied with a log Gaussian process with Poisson likelihood. The data is
aggregated into areas Ai with co-ordinates (xi,1, xi,2). The mortality in an area Ai

is modeled as a Poisson process with mean Eiµi , where Ei is the standardised
expected number of deaths in the area Ai . The complete model is

Y ∼ Poisson(Eµ) (1)

log(µ) = f(xi , xj ) ∼ GP(0, k(xi , xj )), (2)

where the relative log rate log(µ) is given a Gaussian process prior with zero
mean and a squared exponential covariance function described as (Rasmussen and
Williams, 2006)

k(xi , xj ) = σ 2
exp exp

−
1
l2

P∑
p=1

(xi,p − x j,p)
2

 . (3)

The covariance function parameters, the characteristic length-scale l and the signal
magnitude σ 2

exp, are given a half Student’s-t prior.
The Gaussian process prior presented in equation (2) is approximated by a fully

independent training conditional (FITC) sparse approximation in order to speed up
the computations. In the FITC a new set of latent variables u = [u1, ..., um]T, called
the inducing variables, are used to determine the inducing conditionals

qFITC(f|u) = N
(
Kf,uK−1

u,u)u, diag
[
Kf,f − Qf,f

])
(4)

qFITC(f∗|u) = N (K∗,uK−1
u,u)u, K∗,∗ − Q∗,∗), (5)

where Qa,b = Ka,uK−1
u,uKu,b, and f and f∗ represent the training and the test latent

values respectively.
Both the hyperparameters and the latent values are sampled with hybrid Monte

Carlo (HMC) method separately. In FITC approximation the gradient evaluations,
required in HMC, are constructed in such a manner that the explicit evaluation of
the full covariance matrix is avoided.

The sampling for the latent values f is sped up by transformation using a ma-
trix square root of an approximate posterior covariance matrix similar to Chris-
tensen et al. (2006) and conducting HMC dynamics in the resulting f̃ = 6−1/2f
space. The approximate posterior precision, 6−1

= K−1
+ 6−1

l , is obtained as the
sum of the precisions of the prior and the likelihood, where the covariance of the
likelihood is approximated as 6l ≈ −

∂2 log(Poisson(Eλ))

∂ f 2 = Eµ, and µ is approxi-
mated with its prior mean 1.

In the FITC approximation Qf,f+3, where 3 = diag
[
Kf,f − Qf,f

]
, replaces the

prior covariance K, and the posterior precision transforms to 6−1
FITC =

(
Qf,f + 3

)−1
+

6−1
l . To extend the transformation into the FITC approximation a matrix inversion

lemma can be used to form a matrix square root of 6−1
FITC and to construct the

following transformation equations:
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USUT
= 3̂1/23−1Kf,u

(
Ku,u + Ku,f3

−1Kf,u
)−1 Ku,f3

−13̂1/2 (6)

f = 3̂1/2(f̃ + UD−1UTf̃ − UUTf̃) (7)

f̃ = 3̂−1/2f + UDUT3̂−1/2f − UUT3̂−1/2f, (8)

where U and S are matrices of eigenvectors and eigenvalues of the right hand side
of the Eq. (6) respectively. Di i =

√
1 − Si i and 3̂ =

(
6−1

l + 3−1
)−1

.

3 Results

The spatial population and mortality data used in the study were obtained from
Statistics Finland. The reference population representing the population at risk was
formed of the 1995 population. This included approximately 4.9 million people in
the age range of 0–110 years after insufficient records were removed. The mortality
data had been collected during 1995–2000. The standardised expected number of
deaths Ei was computed using the reference population with covariates age, sex,
and education in each area Ai . Two types of mortality were studied: the mortality
due to cerebral vascular diseases with roughly 18 000 deaths and the mortality
due to alcohol-related diseases bringing forth around 5200 deaths. The data was
aggregated into a grid cell size of 20 km x 20 km.

Both datasets consisted of 915 data points. The inducing variables for the
sparse model were set uniformly over the grid giving total of 221 inducing points.
The sampling took a couple of hours and the full model was approximately two
times slower than the sparse model. The posterior mean of the relative risk µ for
two datasets with full and sparse GP are show in Fig.1. The posterior probabil-
ity that the risk differs from the national average can also be evaluated from the
model, but is not shown due to space restrictions. The results are at the moment
preliminary. The code is written in Matlab and it is not yet fully optimized.

4 Conclusion

We constructed a log Gaussian process with a FITC sparse approximation with
uniformly distributed inducing points and a full model. The results were compared
with two sets of health care data and found similar. The simulation time for FITC
approximation was about half the time of full model. As a future development, we
will study practical limit of the number of regions which can be handled, sampling
of the locations of inducing points, various covariance functions, and accuracy of
variational type approximations for marginalizing over latent values.
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(a) Cerebral vascular diseases. The length-scale is approximately 30km.
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(b) Alcohol-related diseases. The length-scale is approximately 74km.

Figure 1: The posterior mean of the relative risk µ estimated with full GP (left) and
sparse GP (right).
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