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Complex gene regulatory mechanisms ensure the proper functioning of bi-
ological cells. New high-throughput experimental techniques, such as mi-
croarrays, provide a snapshot of gene expression levels of thousands of genes
at the same time. If repeated on a sample of synchronized cells, time-series
profiles of gene activity can be obtained. The aim is to reconstruct the
complex gene regulatory network underlying these profiles. Genes often
influence each other in a nonlinear fashion and with intricate interaction
patterns. Linear models are often unsuited to capture such relationships.
Gaussian processes (GPs), on the other hand, are ideal for representing
nonlinear relationships. A particular attraction is the automatic relevance
determination (ARD) effect, removing unused inputs and resulting in sparse
gene networks.

Prediction with Gaussian processes

For the purpose of regressing gene expression data, a combination of a linear
covariance part with a squared exponential proves useful. Gene regulatory
functional relationships rarely show sharp jumps and the smoothness of
squared exponentials is usually not a problem. Especially when working
with logarithmic values many relationships are actually almost linear and
the inclusion of a linear part seems advisable. An automatic relevance deter-
mination (ARD) procedure is then able to select the simpler linear regression
if the nonlinear component is neglectable.

More specifically, for each of the d-dimensional input values x = (x1, . . .,
xN ) the output value is ti = f(xi). The joint distribution of the output
t = (t1, . . . , tN )′ is a multivariate Gaussian N(0, K), where K is given by

Kpq = β0 + CL(xp, xq) + CG(xp, xq) + σ2
ε I(p = q) (1)

Here the linear covariance part is

CL(xp, xq) = x′

pB
−1xq

with the diagonal matrix B = diag(β1, . . . , βd) and the squared exponential
(Gaussian) covariance part is

CG(xp, xq) = α0 exp(−1

2
(xp − xq)

′A−1(xp − xq))

with the diagonal matrix A = diag(α1, . . . , αd). Once training inputs x1, . . .,
xN with known target values ti are given the output distribution of f(x∗) at
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a new input point x∗ can be calculated from the joint covariance function

K̃ =

(

K k(x∗)
k(x∗)′ k(x∗, x∗)

)

for all inputs, where

k(x∗) = (β0 + CL(x∗, xq) + CG(x∗, xq))
N
q=1

and
k(x∗, x∗) = β0 + x∗′B−1x∗ + α0 + σ2

ε

The conditional distribution of f(x∗) is Gaussian N(µ(x∗), σ2(x∗)) with

µ(x∗) = k(x∗)′K−1t

σ2(x∗) = k(x∗, x∗) − k(x∗)′K−1k(x∗)
(2)

A GP is specified by the parameters θ = (β0, β1, . . . , βd, α0, α1, . . . , αd, σ
2
ε ).

Fitting θ for given input data x to output values t = (t1, . . . , tN )′ is achieved
by optimising the log likelihood

log p(t | x, θ) = −1

2

(

t′K(x, θ)t − log |K(x, θ)| − n log 2π

where K(x, θ) is given in (1). Using partial derivatives we find that a con-
jugate gradient method is very efficient in learning GPs for the problems
below.

Optimizing parameters β1, . . . , βd for the linear covariance part amounts
to a likelihood type II optimization of the precision of regression factors
with Gaussian priors when marginalising them out. This has the effect of
removing unused linear input dimensions. Similarly, relevance parameters
α1, . . . , αd going to 0 indicate that an input is not needed in the nonlinear
part. We will make use of this effect in the reconstruction of gene networks
below.

GPs for time-series data

Time-series data consist of T values x1, . . . , xT with xi = (x
(1)
i , . . . , x

(d)
i ) d-

dimensional time sections. We assume that they are generated by a process

xt = f(xt−1) + ε, t = 2, . . . , T

where f = (f (1), . . . , f (d)) is a (nonlinear) smooth function vector and ε ∼
N(0, σ2

ε ) a Gaussian noise. We will represent each regression function f (i)

by a GP with parameters θ(i).
In gene regulatory networks a variable usually depends on very few other

variables. Optimizing hyperparameters θ(i) in a GP when regressing a vari-
able x(i) on x(1), . . . , x(d) amounts to determining the relevant input variables
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or input genes in our case. The expectation is that the ARD results in a
sparse network. In the following we chose lognormal priors on all the pa-
rameters θ. The choise of expectation and variance of the lognormal priors
has some influence on the success of the regression and usually need some
adjustment by hand.

Simulated data

We simulated data from an artificial dynamic network on 3 variables con-
nected by mixed linear and nonlinear relationships (ε ∼ N(0, 0.5), start
values (1,-1,1)). Also shown are the time profiles of the 3 variables.

xt+1 = 0.35xt + 5 sin(0.3yt) + ε1

yt+1 = 0.4yt + 5 cos(0.3z) + ε2

zt+1 = 0.35zt + 5 sin(0.3yt) + ε3
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The following plots compare the true functions (top row) with the recon-
struction by GPs (bottom row) for the 3 variables:
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Also ARD removed unused inputs successfully and the corresponding hy-
perparameters were all 0.
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Circadian clock in Arabidopsis thaliana

The daily up- and down-regulation of genes in the plant A. thaliana is en-
trained by rhythmic light conditions but continues after light is held con-
stant. A core set of genes, in particular LHY and TOC1 are responsible for
sustaining oscillation under constant light conditions. Time-series data of
gene expression every 4 hours over two days have been obtained under such
conditions1. The profiles for some core genes are shown in the following
figure on the left hand side.
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The right hand side shows the network as inferred by using GPs. Inhibition
(bullets) or activation (arrows) are inferred from mean slopes when fitting
the linear part only. A comparatively sparse network that agrees with what
is believed to be the correct network. In particular, the two interlinked
feedback loops are thought to drive the circadian clock. The next plots show
some typical nonlinear dependencies for genes LHY and GI as reconstructed
by the GPs:
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GPs for state space models

Often not all relevant variables are observable. Profiles of hidden variables
can in principle be reconstructed by applying the above estimation of GPs
in an iterated fashion to a state space inferred by an extended Kalman filter
(EKF) approach. We show in the appendix how to calculate expectation and
variance of a multivariate GP given an uncertain input. This can be used in a
straightforward manner by a standard EKF to filter hidden states assuming
nonlinear transitions. Experiments on simulated data show, however, that
careful initialization (for example, by a factor analysis) is crucial.

1Data provide by Kieron Edwards and Andrew Millar, University of Edinburgh

4



Appendix

A Prediction with uncertain input

Quiñonero-Candela et al. [2003] show how to calculate a Gaussian approx-
imation of a Gaussian process with uncertain input. The sections below
extend their approach to the case of a Gaussian process combining a Gaus-
sian term with a linear term and to the multivariate case where several
Gaussian processes are used in parallel.

A Gaussian process is specified by the parameters θ = (β0, β1, . . . , βd),
α0, α1, . . . , αd, σ

2
ε ) and the N input vectors and target values as above, de-

note these data by D. Assume now that the input variable x∗ is uncer-
tain with a Gaussian distribution N(u, S). The predictive distribution for
t∗ = f(x∗)

p(t∗ | u, S, D) =

∫

p(t∗ | x∗, D)pG(x∗ | u, S) dx∗

is analytically intractable. Here

p(t∗ | x∗, D) =
1

σ(x∗)
√

2π
exp(−(t∗ − µ(x∗))2

2σ2(x∗)
)

according to the Gaussian process defined by D via relations (2). What
we can calculate exactly though is the mean and variance of the resulting
distribution. This is enough, for example, to define an exact version of an
extended Kalman filter.

In the following we also assume that we not only have one Gaussian
process but two. Given are N1 inputs x1,1, . . . , xN1,1 for the first and N2

inputs x1,2, . . . , xN2,2 for the second process. Target vectors are t(1) and t(2),
and parameters θ1 and θ2. The corresponding predictive distribution of t̃ =
(t(1)

′

, t(2)
′

)′ is a bivariate Gaussian with mean vector µ̃(x) = (µ1(x)′, µ2(x)′)′

and covariance

Σ̃(x∗) =

(

σ2
1(x

∗) 0
0 σ2

2(x
∗)

)

The covariance of 0 is a reflection of the independence of the underlying
Gaussian processes. We assume the probability distributions over the func-
tion spaces of the two processes are independent. The two Gaussian process
are each defined by their individual parameters θ1 = (β0,1, B1, α0,1, A1, σε,1)
and θ2 = (β0,2, B2, α0,2, A2, σε,2).

The Gaussian approximation is based on the laws of iterated expectation
and variance:

E(t̃∗) = Ex∗(E(t̃∗ | x∗)) = Ex∗(µ̃(x∗))

var(t̃∗) = Ex∗(var(t̃∗ | x∗)) + varx∗(E(t̃∗ | x∗)) = Ex∗(Σ̃(x∗)) + varx∗(µ̃(x∗))

(3)
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A.1 Computing the mean

Setting γ = K−1t the mean of a Gaussian process is

µ(x) =
∑

j

γj (β0 + x′B−1xj + CG(x, xj))

Consequently, the expectation of the mean for uncertain x∗ ∼ N(u, S) is
calculated as

Ex∗(µ(x∗)) =
∑

j

γj

(

β0 + u′B−1xj +

∫

CG(x∗, xj) pG(x∗ | u, S) dx∗

)

(4)

Fortunately, due to the choice of CG(x∗, xj), the latter integral is easily
solved analytically using identity (21) for the combination of Gaussians

lj =

∫

CG(x∗, xj) pG(x∗ | u, S) dx∗

= α0(2π)d/2|A|1/2

∫

pG(x∗ | xj , A) pG(x∗ | u, S) dx∗

= α0|A−1S + I|−1/2 exp

(

− 1

2
(u − xj)

′(A + S)−1(u − xj)

)

(5)

Since A is diagonal, it might be advantageous to write (A+S)−1 = A−1(SA−1+
I)−1 and use, say, a Cholesky decomposition of (SA−1 + I) for both, the
inverse and the determinant.

A.2 Computing the variance, first component

The first component Ex∗(Σ̃(x∗)) of the variance in equation (3) is the ex-
pectation of

σ2(x∗) = k(x∗, x∗) − k(x∗)′K−1k(x∗)

= β0 + α0 + x∗′B−1x∗ + σ2
ε

−
∑

ij

(β0 + x∗′B−1xi + CG(x∗, xi))K
−1
ij (β0 + x∗′B−1xj + CG(x∗, xj))

(6)

Hence,

Ex∗(σ2(x∗)) =

∫

σ2(x∗) pG(x∗ | u, S) dx∗

= β0 + α0 + σ2
ε + tr(B−1(S + uu′)) −

∑

ij

K−1
ij Lij

(7)

where

Lij = Ex∗((β0 + x∗′B−1xi + CG(x∗, xi))(β0 + x∗′B−1xj + CG(x∗, xj)))

(8)
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We used that x′B−1x = tr(x′B−1x) = tr(B−1xx′) and that Ex∗(x∗x∗′) =
S+uu′. Since B is diagonal we simply have tr(B−1(S+uu′)) =

∑

i β
−1
i (Sii+

u2
i ). Before we can calculate Lij we need a couple of integrals.

Ej =

∫

x∗CG(x∗, xj) pG(x∗ | u, S) dx∗

= α0(2π)d/2|A|1/2

∫

x∗pG(x∗ | xj , A) pG(x∗ | u, S) dx∗

= lj(A
−1 + S−1)−1(A−1xj + S−1u)

(9)

If we substitute A for both, A and B, xi, xj for a, b in (17) and (21) and if
we further substitute A/2 for D, xd = (xi + xj)/2 for d, S for C and u for
c in (22) and use |A||2A|−1/2|A/2 + S|−1/2 = |2A−1S + I|−1/2 we obtain

Iij =

∫

CG(x∗, xi) CG(x∗, xj) pG(x∗ | u, S) dx∗

= α2
0(2π)d|A|

∫

pG(x∗ | xi, A) pG(x∗ | xj , A) pG(x∗ | u, S) dx∗

= α2
0|2A−1S + I|−1/2

exp

(

−1

2
(xd − u)′(A/2 + S)−1(xd − u) − 1

2
(xi − xj)

′(2A)−1(xi − xj)

)

(10)

We can now finish (7) by specifying Lij (using (x′B−1xi)
′x′B−1xi = x′

iB
−1xx′B−1xj).

Lij = β2
0 + β0 u′B−1(xi + xj) + x′

iB
−1(S + uu′)B−1xj

+ β0(li + lj) + xiB
−1Ej + xjB

−1Ei + Iij

(11)

A.3 Computing the variance, second component

The second component varx∗(µ̃(x∗)) of the variance can be split as

varx∗(µ̃(x∗)) = Ex∗(µ̃(x∗)µ̃(x∗)′) − Ex∗(µ̃(x∗))Ex∗(µ̃(x∗))′

We already calculated Ex∗(µ̃(x∗)) in section A.1. Continuing with the no-
tation of that section and using results from the previous section A.2, we
have

Ex∗(µ(x∗)2) =
∑

ij

γiγjLij

What is left is the expectation of the covariance between µ1(x
∗) and µ2(x

∗)

µ1(x)µ2(x) =
∑

ij

γi,1γj,2 (β0,1 + x′B−1
1 xi,1 + CG1(x, xi,1))(β0,2 + x′B−1

2 xj,2 + CG2(x, xj,2))

(12)
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that is

Ex∗(µ1(x)µ2(x)) =
∑

ij

γi,1γj,2 L
(12)
ij (13)

Similarly as in section A.2 it is convenient to calculate a couple of inte-
grals first. We denote with Ei,1 and Ej,2 versions of (9), and with lj,1 and
lj,2 versions of (5) for the respective Gaussian processes. Since A1 and A2

are diagonal matrices it is computationally advantagous to combine them
into a diagonal matrix D as in (17):

D(12) = (A−1
1 + A−1

2 )−1

d
(12)
ij = D(12)(A−1

1 xi,1 + A−1
2 xj,2)

(14)

If we now use (21) involving z̃H and substitute S for C and u for c in (22)
and observe

|A1|1/2|A2|1/2|A1 + A2|−1/2||D(12) + S|−1/2 = |(D(12))−1S + I|−1/2

we obtain

I
(12)
ij =

∫

CG1(x
∗, xi,1) CG2(x

∗, xj,2) pG(x∗ | u, S) dx∗

= α0,1α0,2(2π)d|A1|1/2|A2|1/2

∫

pG(x∗ | xi,1, A1) pG(x∗ | xj,2, A2) pG(x∗ | u, S) dx∗

= α0,1α0,2 |(A−1
1 + A−1

2 )S + I|−1/2

exp

(

−1

2
(d

(12)
ij − u)′(D(12) + S)−1(d

(12)
ij − u) − 1

2
(xi,1 − xj,2)

′(A1 + A2)
−1(xi,1 − xj,2)

)

(15)

We can now finish (13) by specifying L
(12)
ij .

L
(12)
ij = β0,1β0,2 + β0,2u

′B−1
1 xi,1 + β0,1u

′B−1
2 xj,2 + x′

i,1B
−1
1 (S + uu′)B−1

2 xj,2

+ β0,1lj,2 + β0,2li,1 + xi,1B
−1
1 Ej,2 + xj,2B

−1
2 Ei,1 + I

(12)
ij

(16)

B Integrating products of Gaussians

Following Quiñonero-Candela et al. [2003] we note that two Gaussians N(a, A)
and N(b, B) can be combined as follows (pG(x | a, B) a Gaussian density
on x with mean a and covariance matrix B):

pG(x | a, A) pG(x | b, B) = zD pG(x | d, D)

D = (A−1 + B−1)−1

d = D(A−1a + B−1b)

zD =
|D|1/2

(2π)d/2|A|1/2|B|1/2
exp

(

−1

2
(a′A−1a + b′B−1b − d′D−1d)

)

(17)
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Consequently, the integral of two Gaussians is

∫

pG(x | a, A) pG(x | b, B) dx = zD

The normalizing constant zD can be simplified using the following matrix
identities (variants of Woodbury’s inversion formula)

(A + B)−1 = A−1 − A−1(A−1 + B−1)−1A−1 = A−1 − A−1DA−1

= B−1 + B−1(A−1 + B−1)−1B−1 = B−1 + B−1DB−1

(A + B)−1 = A−1(A−1 + B−1)−1B−1 = A−1DB−1

= B−1(A−1 + B−1)−1A−1 = B−1DA−1

(18)

We then have

|D|1/2|A|−1/2|B|−1/2 = |A−1(A−1 + B−1)−1B−1|1/2 = |A + B|−1/2 (19)

and (noting that covariance matrices are symmetric)

−d′D−1d = −(A−1a + B−1b)′DD−1D(A−1a + B−1b)

= −a′A−1DA−1a − b′B−1DB−1b − a′A−1DB−1b − b′B−1DA−1a

= a′(A + B)−1a − a′A−1a + b′(A + B)−1b − b′B−1b

− a′(A + B)−1b − b′(A + B)−1a

= (a − b)′(A + B)−1(a − b) − a′A−1a − b′B−1b

(20)

and the following simplification of the above integral

zD =

∫

pG(x | a, A) pG(x | b, B) dx

= (2π)−d/2|A + B|−1/2 exp

(

−1

2
(a − b)′(A + B)−1(a − b)

)

(21)

Extending the result to the product of three Gaussians N(a, A), N(b, B)
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and N(c, C) is straighforward:

pG(x | a, A) pG(x | b, B) pG(x | c, C) = zD pG(x | d, D)pG(x | c, C)

= zDz̃HpG(x | h, H) = zHpG(x | h, H)

H = (D−1 + C−1)−1 = (A−1 + B−1 + C−1)−1

h = H(D−1d + C−1c) = H(A−1a + B−1b + C−1c)

z̃H =
|H|1/2

(2π)d/2|D|1/2|C|1/2
exp

(

−1

2
(d′D−1d + c′C−1c − h′H−1h)

)

= (2π)−d/2|D + C|−1/2 exp

(

−1

2
(d − c)′(D + C)−1(d − c)

)

zH =
|H|1/2

(2π)d|A|1/2|B|1/2|C|1/2
exp

(

−1

2
(a′A−1a + b′B−1b + c′C−1c − h′H−1h)

)

(22)
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J. Quiñonero-Candela, A. Girard, and C. E. Rassmussen. Prediction at an
uncertain input for gaussian processes and relevance vector machines -
application to time-series forecasting. Technical report, Informatics and
Mathematical Modelling, Technical Univesity of Denmark, 2003.

10


