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Problem Statement

Aim is to estimate locations of the sensars and number of
repetitions given a set of possible sensors locations, cost of
measurements and upper bound for the number of repetitions at
given sensor locations in order to get good prediction f(x)

° N sensors measure signals at positions x;
. - — </
e Sensors measure function y; = f(x;) = x;W + n;

e Weight vector w gives information about ‘system’

X1

X3

e Estimate w based on Xp "2
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Optimal experiment design?

t i

T

Optimal experiment design (OED) idea:

e Given a set of n data points X = {x;}
e Choose multiset Xp = {xp;} € X with N data points, N; times x;
e Measure at xp; — yp = {yp,:} with yp; = x ,w +n;

e Estimate w based on {Xp,yp} - W
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Optimal experiment design for RR

e Result is thus a non-convex optimization problem:

s.t. de=1

e Minimize tight upper bound:

a§ = argmin, —logdet (Z ozixix,li—|—')/1)
i

s.t. de =1
a>0

e [ hisis a convex optimization problem again
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Reqgularized MVCE

e What about the dual of the regularized D-OED?

minyg, 109 det(M) + p -+ ytrace(l\/lfl) A
s.t. XéM_IXZ‘ <=pu

e The optimum is given by:

M, =" a% xx; + 1 o o
)

where a; is the solution of the regularized D-OED problem

e Interpretation: trace(M—l) = Zi% — fit an ellipsoid, but
make sure none of the eigenvalues of M§ is too small. ..
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Kernel ridge regression (KRR)

e Kernel ridge regression (KRR):
Kp = XpXp

3= (Kp+75D)~ly

~ /
WrrR = XpB =) _ BiXp,
5

f(x) =x"Wgrg = > Bix'xp; = D Bik(x,xp,;)

e Everything expressed in terms of Kp (i.e. in terms of inner
products/kernels):

e If we want to do OED for KRR, we need to write it entirely
in terms of kernel evaluations/innerproducts—can we?

)
/
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Kernel MVCE

e Mahalanobisdistances x'(3; a%xz-x; +~+I)~1x in terms of in-
ner products/kernel evaluations?

o Let AKA = VAV’ (eigenvaluedecomposition), then (deriva-
tion not shown...):

x' (3 a,*y’z-xixé ++4D " x = (x/x —x'X'AVA(A + fyI)_1V’AXx)
1

= |~

e Express in terms of k(x,x) = x'x and k = Xx, then:
1
x' (Y afy,ixixé +4D x = > (kz(x, x) — K'AVA(A + 'yI)_lV’Ak>
i

completely expressed in terms of kernels
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OED: summary

D-OED

MVCE

—logdet (Z aixix;>
i

Ming minyg , logdet (M) + p
S.t. XM 1x, <=
st. d1=1 ’ s
a>0
min, — logdet (Z XX, + 71) minyg,, logdet(M) + pu +~trace(M 1)
l s.t. ng_lxi <=pu
s.t. od1=1
a>0
ming, —logdet (AKA 4 ~I)
s.t. ada<=1
a>0
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Experiment
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Generalised D-optimal Experimental Design

Proposed optimisation problem

For the given set of kernels K, the matrix A and the weights w; and the parameter v, we
propose the following formulation:

<
Ql = argming — Z-w_g logdet (AAK,AA ++1),
s=1
s.t. a'a<1.

1
0<a< —e,
- N

we=1 w>I.

P p p i _— p

where the diagonal matrix A, with A;; =a; = ,/a; = 0, such that (witha = (ay ag --- an))
from e'ex = 1 we have that a'a = 1, a define the solution of the continuous OED
problem (Titterington, 1975), Ky = {ks(xi,%;)}[i=1...6, j=1...0, the given matrix A =
diag{ A, ..., As} defines cost of taking measurements in different locations, v is the upper
bound for the number of repetitive measurements (1 can be different for the different sensor

locations). If the cost of taking measurements in different locations is the same we can omit
the matrix A.
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Conclusions

Two seemingly very different algorithms within one optimiza-
tion framework

A way to perform optimal experimental designin high dimen-
sional spaces, such as kernel induced feature spaces

A way to perform minimum volume covering ellipsoid estima-
tion in high dimensionalspaces to perform novelty detection

Nice features: Convex optimisation and sparse solution



