#### Gaussian Processes for Active Sensor Management

Alexander N. Dolia, University of Southampton

This poster is based on

•A.N.Dolia, C.J.Harris, J.Shawe-Taylor, D.M.Titterington, **Kernel Ellipsoidal Trimming**, submitted to the Special Issue of the Journal Computational Statistics and Data Analysis on Machine Learning and Robust Data Mining. under review.

•A.N.Dolia, T.De Bie, C.J.Harris, J.Shawe-Taylor, D.M.Titterington. **Optimal experimental design for kernel ridge regression, and the minimum volume covering ellipsoid**, Workshop on Optimal Experimental Design, Southampton, 22-26 September, 2006

Joint work with: Dr. **Tijl De Bie**, Katholieke Universiteit Leuven Prof. **John Shawe-Taylor**, University of Southampton Prof. **Chris Harris**, University of Southampton Prof. **Mike Titterington**, University of Glasgow

#### **Problem Statement**

Aim is to estimate locations of the sensors and number of repetitions given a set of possible sensors locations, cost of measurements and upper bound for the number of repetitions at given sensor locations in order to get good prediction  $f(\mathbf{x})$ 

- Sensor network: N sensors measure signals at positions  $\mathbf{x}_i$
- Sensors measure function  $y_i = f(\mathbf{x}_i) = \mathbf{x}'_i \mathbf{w} + n_i$
- $\bullet$  Weight vector  ${\bf w}$  gives information about 'system'
- Position sensors optimally at  $\mathbf{X}_D$
- $\bullet$  Estimate  ${\bf w}$  based on  ${\bf X}_D$





Optimal experiment design (OED) idea:

- Given a set of n data points  $\mathbf{X} = \{\mathbf{x}_i\}$
- Choose multiset  $\mathbf{X}_D = {\mathbf{x}_{D,i}} \subseteq \mathbf{X}$  with N data points,  $N_i$  times  $\mathbf{x}_i$
- Measure at  $\mathbf{x}_{D,i} \to \mathbf{y}_D = \{y_{D,i}\}$  with  $y_{D,i} = \mathbf{x}'_{D,i}\mathbf{w} + n_i$
- Estimate  ${\bf w}$  based on  $\{{\bf X}_D, {\bf y}_D\} \rightarrow \widehat{{\bf w}}$

#### Optimal experiment design for RR

• Result is thus a non-convex optimization problem:

$$\min_{\alpha} -\log \det \left( \sum_{i} \alpha_{i} \mathbf{x}_{i} \mathbf{x}_{i}' + \gamma \mathbf{I} + \frac{1}{4} \gamma^{2} \left( \sum_{i} \alpha_{i} \mathbf{x}_{i} \mathbf{x}_{i}' \right)^{-1} \right)$$
  
s.t.  $\alpha' \mathbf{e} = 1$   
 $\alpha \ge 0$ 

• Minimize tight upper bound:

$$\begin{aligned} \alpha_{\gamma}^{*} &= \operatorname{argmin}_{\alpha} - \operatorname{log} \operatorname{det} \left( \sum_{i} \alpha_{i} \mathbf{x}_{i} \mathbf{x}_{i}' + \gamma \mathbf{I} \right) \\ \text{s.t.} \quad \alpha' \mathbf{e} &= 1 \\ \alpha \geq 0 \end{aligned}$$

• This is a convex optimization problem again

## **Regularized MVCE**

• What about the dual of the regularized D-OED?

 $egin{aligned} \min_{\mathbf{M},\mu} & \mathsf{log}\,\mathsf{det}(\mathbf{M}) + \mu + \gamma\mathsf{trace}(\mathbf{M}^{-1}) \ & \mathsf{s.t.} & \mathbf{x}_i'\mathbf{M}^{-1}\mathbf{x}_i <= \mu \end{aligned}$ 

• The optimum is given by:

$$\mathbf{M}_{\gamma}^{*} = \sum_{i} \alpha_{\gamma,i}^{*} \mathbf{x}_{i} \mathbf{x}_{i}' + \gamma \mathbf{I}$$

where  $\alpha^*_\gamma$  is the solution of the regularized D-OED problem

• Interpretation: trace( $M^{-1}$ ) =  $\sum_i \frac{1}{\lambda_i} \rightarrow \text{fit}$  an ellipsoid, but make sure none of the eigenvalues of  $M^*_{\gamma}$  is too small...

## Kernel ridge regression (KRR)

• Kernel ridge regression (KRR):

 $\mathbf{K}_D = \mathbf{X}_D \mathbf{X}'_D$  $\beta = (\mathbf{K}_D + \tilde{\gamma} \mathbf{I})^{-1} \mathbf{y}$  $\hat{\mathbf{w}}_{RR} = \mathbf{X}'_D \beta = \sum_i \beta_i \mathbf{x}_{D,i}$ 



Kernel RR

$$f(\mathbf{x}) = \mathbf{x}' \hat{\mathbf{w}}_{RR} = \sum_{i} \beta_i \mathbf{x}' \mathbf{x}_{D,i} = \sum_{i} \beta_i k(\mathbf{x}, \mathbf{x}_{D,i})$$

- $\bullet$  Everything expressed in terms of  ${\bf K}_D$  (i.e. in terms of inner products/kernels): 'kernel trick'
- If we want to do OED for KRR, we need to write it entirely in terms of kernel evaluations/innerproducts—can we?

# Kernel MVCE

- Mahalanobis distances  $\mathbf{x}'(\sum_i \alpha^*_{\gamma,i} \mathbf{x}_i \mathbf{x}'_i + \gamma \mathbf{I})^{-1} \mathbf{x}$  in terms of inner products/kernel evaluations?
- Let  $AKA = V\Lambda V'$  (eigenvalue decomposition), then (derivation not shown...):

$$\mathbf{x}' (\sum_{i} \alpha_{\gamma,i}^* \mathbf{x}_i \mathbf{x}_i' + \gamma \mathbf{I})^{-1} \mathbf{x} = \frac{1}{\gamma} \left( \mathbf{x}' \mathbf{x} - \mathbf{x}' \mathbf{X}' \mathbf{A} \mathbf{V} \mathbf{\Lambda} (\mathbf{\Lambda} + \gamma \mathbf{I})^{-1} \mathbf{V}' \mathbf{A} \mathbf{X} \mathbf{x} \right)$$

Novelty detection MVCE and duality Regularized MVCE <u>Kernel MVCE</u>

• Express in terms of  $k(\mathbf{x}, \mathbf{x}) = \mathbf{x}'\mathbf{x}$  and  $\mathbf{k} = \mathbf{X}\mathbf{x}$ , then:

$$\mathbf{x}' (\sum_{i} \alpha_{\gamma,i}^* \mathbf{x}_i \mathbf{x}_i' + \gamma \mathbf{I})^{-1} \mathbf{x} = \frac{1}{\gamma} \left( k(\mathbf{x}, \mathbf{x}) - \mathbf{k}' \mathbf{A} \mathbf{V} \mathbf{\Lambda} (\mathbf{\Lambda} + \gamma \mathbf{I})^{-1} \mathbf{V}' \mathbf{A} \mathbf{k} \right)$$

completely expressed in terms of kernels

#### **OED:** summary

D-OED

MVCE





FIGURE 4.1: Support points of regularized and non-regularized experimental design,  $\tilde{\gamma} = 20$  and  $\gamma = 2\tilde{\gamma}/N$ , N = 100



FIGURE 4.2: nonkernel OED performance,  $\tilde{\gamma} = 20$  and  $\gamma = 2\tilde{\gamma}/N$ 

#### Generalised D-optimal Experimental Design

#### Proposed optimisation problem

For the given set of kernels  $\mathbf{K}_s$ , the matrix  $\mathbf{\Lambda}$  and the weights  $w_i$  and the parameter  $\gamma$ , we propose the following formulation:

$$\begin{aligned} \boldsymbol{\alpha}_{\gamma}^{*} &= \operatorname{argmin}_{\boldsymbol{\alpha}} \quad -\sum_{s=1}^{S} w_{s} \log \det \left( \mathbf{A} \mathbf{A} \mathbf{K}_{s} \mathbf{A} \mathbf{A} + \gamma \mathbf{I} \right), \\ \text{s.t.} \quad \mathbf{a}' \mathbf{a} \leq 1, \\ 0 \leq \mathbf{a} \leq \sqrt{\frac{1}{\nu \ell}} \mathbf{e}, \\ \mathbf{w}' \mathbf{e} = 1, \quad \mathbf{w} \geq 0. \end{aligned}$$

where the diagonal matrix  $\mathbf{A}$ , with  $\mathbf{A}_{ii} = a_i \triangleq \sqrt{\alpha_i} \ge 0$ , such that (with  $\mathbf{a} = (a_1 \ a_2 \ \cdots \ a_n)'$ ) from  $\mathbf{e}' \boldsymbol{\alpha} = 1$  we have that  $\mathbf{a}' \mathbf{a} = 1$ ,  $\boldsymbol{\alpha}$  define the solution of the continuous OED problem (Titterington, 1975),  $\mathbf{K}_s = \{k_s(\mathbf{x}_i, \mathbf{x}_j)\}|_{(i=1,...,\ell, j=1,...,\ell)}$ , the given matrix  $\mathbf{\Lambda} = diag\{\lambda_1, ..., \lambda_\ell\}$  defines cost of taking measurements in different locations,  $\nu$  is the upper bound for the number of repetitive measurements ( $\nu$  can be different for the different sensor locations). If the cost of taking measurements in different locations is the same we can omit the matrix  $\mathbf{\Lambda}$ .

# Conclusions

- Two seemingly very different algorithms within one optimization framework
- A way to perform optimal experimental design in high dimensional spaces, such as kernel induced feature spaces
- A way to perform minimum volume covering ellipsoid estimation in high dimensional spaces to perform novelty detection
- Nice features: Convex optimisation and sparse solution