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Problem Statement
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Aim is to estimate locations of the sensors and number of
repetitions given a set of possible sensors locations, cost of
measurements and upper bound for the number of repetitions at
given sensor locations in order to get good prediction f(x)

• Sensor network: N sensors measure signals at positions xi

• Sensors measure function yi = f(xi) = x0iw+ ni

• Weight vector w gives information about ‘system’

• Position sensors optimally at XD

• Estimate w based on XD
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Optimal experiment design?
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Optimal experiment design (OED) idea:

• Given a set of n data points X= {xi}

• Choose multisetXD = {xD,i} ⊆ X withN data points, Ni times xi

• Measure at xD,i→ yD = {yD,i} with yD,i = x0D,iw+ ni

• Estimate w based on {XD,yD} → ŵ
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Optimal experiment design for RR

• Result is thus a non-convex optimization problem:

minα − logdet
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• Minimize tight upper bound:

α∗γ = argminα − logdet
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• This is a convex optimization problem again
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Regularized MVCE

• What about the dual of the regularized D-OED?

minM,μ logdet(M) + μ+ γtrace(M−1)
s.t. x0iM

−1xi <= μ

• The optimum is given by:

M∗γ =
X
i

α∗γ,ixix0i+ γI

where α∗γ is the solution of the regularized D-OED problem

• Interpretation: trace(M−1) = P
i
1
λi
→ fit an ellipsoid, but

make sure none of the eigenvalues of M∗γ is too small.. .
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Kernel ridge regression (KRR)

Least squares

Ridge regression

Kernel RR

• Kernel ridge regression (KRR):
KD = XDX

0
D

β = (KD+ eγI)−1y
ŵRR= X0Dβ =

X
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f(x) = x0ŵRR =
X
i

βix
0xD,i =

X
i

βik(x,xD,i)

• Everything expressed in terms of KD (i.e. in terms of inner
products/kernels): ‘kernel trick’

• If we want to do OED for KRR, we need to write it entirely
in terms of kernel evaluations/innerproducts—can we?
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Kernel MVCE

• Mahalanobis distances x0(Piα∗γ,ixix0i+ γI)−1x in terms of in-
ner products/kernel evaluations?

• Let AKA= VΛV0 (eigenvaluedecomposition), then (deriva-
tion not shown. . . ):
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• Express in terms of k(x,x) = x0x and k= Xx, then:
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k(x,x) − k0AVΛ(Λ+ γI)−1V0Ak

´
completely expressed in terms of kernels

Novelty detection

MVCE and duality

Regularized MVCE

Kernel MVCE
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OED: summary
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Experiment 
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Generalised D-optimal Experimental Design
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Conclusions

• Two seemingly very different algorithms within one optimiza-
tion framework

• A way to perform optimal experimental design in high dimen-
sional spaces, such as kernel induced feature spaces

• A way to perform minimum volume covering ellipsoidestima-
tion in high dimensional spaces to perform novelty detection

• Nice features: Convex optimisation and sparse solution


