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Overview

Gene regulatory networks, microarrays
Time-series analysis by linear regression
Bayesian inference, Occam’s razor

Extension to nonlinear models
Gaussian processes

Applications
Filtering with Gaussian processes
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Gene Regulatory Networks
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» Gene expression levels depend on external stimuli
and activity of genes (transcription factors)

» Microarrays measure the mRNA levels of genes
» Construction of gene networks from microarray data
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A. th'aliana: APRR family

f W Time-series of A. T

A | thaliana
APRR7 : Constant ||ght

M 13 time points

. every 4 hours from
PRR3 26 to 74 hrs

|
M Data by Kieron
OC1/APRR1

! Edwards and

log expression levels

——————+————— 1 Andrew Millar

26 30 34 38 42 46 50 54 58 62 66 /0 74

time/hrs

APRR family, possible modulators for light sensitivity of
Lmain circadian clock series J

— p.4/35



Networks from time-series data

f O A A A T

A
/\ B B B
B = C
—

Static graph representing dependencies between
genes has cycles

Cycles unrolled in time: acyclic graph
LNetwork topology repeated over time slices J
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_Iinear time-series model

f ry = Pr g+ p+w T

x; 1S N-vector of RNA levels at time ¢ (of NV genes)
w; 1S N-vector of biological noise added at ¢

1 1S N-vector of constant trend, ie constitutive
expression

If there is no constant trend, 1 = 0, ® can be
estimated by standard regression:.

= (X X)X X

where X; and X; | are N x (' — 1) matrices with
Ltime vectors x,...,xzr and zy,...,xr_1 as ColumnsJ
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Estimating matrix for APPR family

fEstimation by standard (least squares) regression: T

APRR9 APRR/7 APRR5 APRR3 TOC1

D

R9 -0.59 -0.06 0./8 0.39 0.48
R/ 0.56 0.35 0.34 0.29 0.21
RS -0.80 0.15 -0.26 0.46 0.43
APRR3 -0.34 -0.94 -0.12 -0.13 0.05
TOC1 -0.11 -0.05 0.66 046 0.30

D
D

> > >
0 0 0

Problem: each gene connected to each other

One could test for significance of nonzero
parameters: problems of significance tests,
Lsignificance levels, multiple testing, ... J



Bayesian models are simple
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Automatic complexity control,
Occam’s razor:

Complex model covers many
data sets: small probability each

Simple model few data sets:

L JI ' \\Uarge probability each

‘MacKay, Neal]

Automatic relevance determination: assume
Gaussian distribution for each matrix entry a;; with

variances afj as free parameters, integrate out a;; and
~ maximize P(D | model, {¢/;}) [RVMs Tipping] |
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Linear regression framework

o N

t=dw+e€
Probability of data, given parameters (likelihood):

1 ( ﬁ——@wP)
(QW)AUQJATGXP 202

p(t | w,0%) =

Gaussian prior on coefficients (weights) w:

M 2

1 o Wi
p(w ‘ Oé) — (QW)_M/Q H 05717{2 eXp( 9 )
m=1

., is the precision (the inverse variance 1/02)

.



Maximum likelihood type Il
flntegrating out w: T

1 1, .
p(t | a,0%) = 2V O] exp(—it'C )

O =c’] + DA D

o Maximum likelihood estimation of
hyperparameters o by maximizing p(t | a, 0?)
(type Il ML) brings Occam’s razor to bear

o Tipping et al. suggest analytical solutions for
iterative optimization, optimizing for o; In turn

o Maximization, eg, by conjugate gradients seems
- tobe atleast as efficient o
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Sparse Bayesian estimates for APRR net

f APRR9 APRR7 APRR5 APRRS3 TOC]
APRR9 -0.11 0.27 -0.90 -0.01 0
APRRY7 0.00 0.28 0.00 -0.80 0
APRR5 0.28 0.39 0.00 0.00 0
APRR3 0.00 0.41 0.59 0.00 0
TOC1 0.00 0.37 0.52 0.00 0

~ APRRO o |
l Far fewer nonzero entries
than in standard
> APTR5 regression!
APRR7 p—— APRR3 TOC
*




Reconstruction of APRR traces

PRR3 | APRR3 |
N\ |
OC1/APRR1 OC1/APRR1
| |
| |
| | | | | | | | | | | | | | | | | | | | | | | | | |
26 30 34 38 42 46 50 54 58 62 66 70 74 26 30 34 38 42 46 50 54 58 62 66 70 74
time/hrs time/hrs

Start estimated dynamics on initial conditions with O
process noise: good agreement

o |
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Sparse Bayesian estimates for LHY/TOC1 net

-

LHY TOC1 Gl PIF3 o
LHY 0.66 0.80 -0.78 0.00
TOC1 -0.34 -0.19 0.58 -0.10
Gl 0.00 -0.87 0.65 0.00
PIF3 0.00 0.00 0.22 -0.14
LHY In negative feedback
¢ with TOC1
» LHY |- _
Second negative feedback
loop involving Gl
TOC1 o P J
T PIF3 just added for good
# o et measure
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Reconstruction of LHY/TOC1 traces
o .
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time/hrs time/hrs

Start estimated dynamics on initial conditions with O
process noise
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Nonlinear dependencies

-

Assumed linear
depencies of level of

gene A on other
gene levels

Genes often operate

as switches and
complex gates with

nonlinear
Interactions (eg

exclusive or)

Need to go beyond linear models:
LGaussian processes (GP) J
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Gaussian process

-

Input values d-dimensional z = (z1,...,zy),
xT; € R?
Target values t = (t1,...,ty), t; € R

Joint distribution of the output ¢ iIs multivariate
Gaussian N (0, K)

Covariance matrix K
Kyq = Bo + CL('f’fpv ajq) T CG(xpa xq) T agl(p — (J)

By overall constant
o noise term along diagonal of K
I() indicator function N



Covariance components

-

Linear covariance part
! »—1
Cr(zy, z,) = x,B" 1,

with linear relevance parameters
B =diag(f1, ..., fa)
Squared exponential (Gaussian) covariance part

1 ;o
OG(ZEpa flfq) = @ exp(—§(:€p - xq) A l(xp — xq))

with nonlinear relevance parameters
A =diag(aq, ..., a4) and scale parameter «

o |
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Compare with linear regression

o N

Compare linear covariance part with noise:
! n—1 2
Cr(xp,xy) =2, B xg + 0.1

with the covariance matrix of a linear regression with
weights integrated out (see above):

C =AY + o2
This Is the same If
B = diag(oq, Cee Oép) — dlag(l/g%a SR 1/0-2)

and the rows of ® are the input vectors z;

.



Training of GP

fCovariance parameters fyap Mmaximizing posterior T
probabillity:

P |t,x)x P(t|x,0)P(0)
with
log P(t | 7,0) = —%(t’K(x, 0)t—log | K (z,0)|—nlog 27)
Lognormal prior P(8) with fixed a and b
log P() = N(0 | a,b)

LOptimization with conjugate gradients (using J
derivatives)



Conditional mean and variance

fNew iInput point z*:

where

k(z*) = (Bo + Cr(a”, zg) + Cala”, 74) ) g
k(z*,2%) = By + 2B 12" + ap + o2

f(z*) is Gaussian N (u(z*), o*(z*))

w(x®) = k(z*) K
B o (x*) = k(z*, ") — k(") K k(")



GP on simulated static data

-

Relevance parameters:

1 L9 X3
nonlinear 0.21 O 0
linear 0 0.35 0O

estimated sd 0.92

30 data points with f(x1,x9,x3) = 5sin(0.7x1) + 0.529 + €

mhere e~ N(0,1) N
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GP on simulated time-series data
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Artificial network of 3
variables connected by

“¥Y nonlinear relationships

3 variables

241 = 0.352; 4 5sin(0.3y,) + €
Yir1 = 0.4y, + 5c0s(0.32;) + €2
St4] = O4Zt nE Olytz — 2+ €3

| | | |
5 10 15 20

time

Stable cycling easy to achieve with nonlinear networks

o |
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GP on time-series
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Variable 1: the linear and nonlinear relevance
parameters for input 3 are both 0
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GP on time-series

Variable 2: the linear and nonlinear relevance
parameters for input 1 are both 0

o |
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GP on time-series
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Variable 3: the linear and nonlinear relevance

parameters for input 1 are both 0
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Gene network: LHY dependency
-

Nonlinear relevance:
0.01, 0.01, 0.73, 0.01

Linear relevance:
0.81, 1.13, 0.45, 0.00

Estimated sd 0.18

No dependency of LHY on
PIF3

Nonlinear dependency of LHY on TOC1 and Gl, LHY
and PIF3 were setto O

L |
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Gene network: Gl dependency

-

Nonlinear relevance:
0.01, 0.00, 0.78, 0.00

Linear relevance:
0.00, 0.82, 0.17, 0.00

Estimated sd 0.30

No dependency of Gl on
LHY and PIF3

Linear (negative) dependency of Gl on TOC1,
Lnonlinear (positive) dependency of Gl on itself J
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Light input pathway
Entrainment of 24h rhytTrh
via light input

phytochromes (phy):
red, IR

cryptochromes (cry):
blue, UV

Even in constant light
condition cycling (Cy2,
PhyA, PhyB)

Bidirectional links from
central clock?

' J
I T T T T T I T T T T T 1
Lﬁ*SO 34 38 42 46 50 54 58 62 66 70 74
— p.28/35
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Light input pathway

Chain of Phy and Crﬂ
regulation




Light input and PRR pathway




State space model

T = f(xi-1) + €
Y = ClEt + €9

If vector y represents observable variables (genes),
use C' = (0,1)

f(x) = (fi(x),..., fa(z)) is vector of d parallel GPs
each trained independently

Extended Kalman filtering with GPs: modify
oredictive mean and variance

terate with MLE type Il estimation of relevance
parameters: ARD-EM algorithm for GP




Extended Kalman filter

P(x;) = N(z; | 2p, Vp)
r, = p(mi—1, Pi_1), V,= Y(mi1, Pi1) + Q
P(x; | t;) = N(z; | my, B)
mi =1y + Kt~ Cry), P = (I— KO,
K =V,C'(CV,C'+ R)™*

Need to calculate mean [i(u, S) and covariance

V, = >(u, S) of parallel GPs for an uncertain input
u ~ N(u,S) (similar to J. Quifionero-Candela, A.
Girard, and C. E. Rasmussen, 2003)

-



Uncertain input for parallel GPs

fWith covariances Cz and C'; mean and covariance T
exact, eg

[ Cota' 2 pata” 0. 8) da’

combination of two Gaussians
Variance of f(z*) is

B (3(2*)) + varg (a(z?))

~

>.(z*) iIs composed of covariances of each GP
var,-(ji(x*)) involves covariances across GPs
L(solution along lines of Quinonero-Candela et al.) J
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3 variables

Reconstruction of hidden variable

3 variables

| T T 1 | T
5 10 15 20 5 10 15 20

time time

3rd variable (green) treated as hidden variable In
GP-EM reconstruction on left-hand side

o |
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Conclusion

Complexity control (Occam’s razor) by Bayesian T
estimation of hyperparameters

MAP estimation of hyperparameters (Maximum
likelihood type II) works fine

Gaussian processes integrate linear and
nonlinear components

Downside: setting of prior parameters (a and b)
above is critical, particularly noise parameter in
case of noisy data

GP EM possible but tricky due to presence of
many local optima
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