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Eigenfunctions

k(x, y) =

NF∑
i=1

λiφi(x)φi(y)

eigenfunctions obey∫
k(x, y)p(x)φi(x) dx = λiφi(y)

Note that
Eigenfunctions are orthogonal wrt p(x)∫

φi(x)p(x)φj(x) = δij

The eigenvalues are the same for the symmetric kernel

k̃(x, y) = p1/2(x)k(x, y)p1/2(y)



Relationship to the Gram matrix

Approximate the eigenproblem∫
k(x, y)p(x)φi(x)dx ' 1

n

n∑
k=1

k(xk , y)φi(xk )

Plug in y = xk , k = 1, . . . , n to obtain the matrix
eigenproblem (n × n).
λmat

1 , λmat
2 , . . . , λmat

n is the spectrum of the matrix. In limit
n →∞ we have

1
n

λmat
i → λi

Nyström’s method for approximating φi(y)

φi(y) =
1

nλi

n∑
k=1

k(xk , y)φi(xk )



What is really going on in GPR?

f (x) =
∑

i

ηiφi(x)

ti = f (xi) + εi εi ∼ N(0, σ2
n)

p(ηi) ∼ N(0, λi)

Posterior mean

η̂i ∼
λi

λi + σ2
n

n

ηi

Ferrari-Trecate, Williams and Opper (1999)

Require λi � σ2
n/n in order to find out about ηi

All eigenfunctions are present, but can be “hidden”



Eigenfunctions depends on p(x)

Toy problem

p(x) is a mixture of Gaussians at ±1.5, variance 0.05

Kernel
k(x , y) = exp−(x − y)2/2`2

For ` = 0.2 eigenfunctions are
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For ` = 0.4 eigenfunctions
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Notice how large-λ eigenfunctions have most variation in
areas of high density: c.f. curse of dimensionality



Eigenfunctions for stationary kernels

For stationary covariance functions on RD, eigenfunctions
are sinusoids (Fourier analysis)

Matern covariance function

kMatern(r) =
21−ν

Γ(ν)

(√2νr
`

)ν
Kν

(√2νr
`

)
,

S(s) ∝
(2ν

`2 + 4π2s2
)−(ν+D/2)

ν →∞ gives SE kernel

Smoother processes have faster decay of eigenvalues



Approximation Methods

Fast approximate solution of the linear system

Subset of Data

Subset of Regressors

Inducing Variables

Projected Process Approximation

FITC, PITC, BCM

SPGP

Empirical Comparison



Gaussian Process Regression

Dataset D = (x i , yi)
n
i=1, Gaussian likelihood p(yi |fi) ∼ N(0, σ2)

f̄ (x) =
n∑

i=1

αik(x, x i)

where
α = (K + σ2I)−1y

var(x) = k(x, x)− kT (x)(K + σ2I)−1k(x)

in time O(n3), with k(x) = (k(x, x1), . . . , k(x, xn))
T



Fast approximate solution of linear systems

Iterative solution of (K + σ2
nI)v = y, e.g. using Conjugate

Gradients. Minimizing

1
2

vT (K + σ2
nI)v − yT v.

This takes O(kn2) for k iterations.
Fast approximate matrix-vector multiplication

n∑
i=1

k(x j , x i)vi

k -d tree/ dual tree methods (best for short kernel
lengthscales ?) (Gray, 2004; Shen, Ng and Seeger, 2006;
De Freitas et al 2006)
Improved Fast Gauss transform (Yang et al, 2005) (best for
long kernel lengthscales ?)



Subset of Data

Simply keep m datapoints, discard the rest: O(m3)

Can choose the subset randomly, or by a greedy selection
criterion

If we are prepared to do work for each test point, can
select training inputs nearby to the test point. Stein (Ann.
Stat., 2002) shows that a screening effect operates for
some covariance functions



K

K

uu

uf

n

m

K̃ = KfuK−1
uu Kuf

Nyström approximation to K



Subset of Regressors

Silverman (1985) showed that the mean GP predictor can
be obtained from the finite-dimensional model

f (x∗) =
n∑

i=1

αik(x∗, x i)

with a prior α ∼ N (0, K−1)

A simple approximation to this model is to consider only a
subset of regressors

fSR(x∗) =
m∑

i=1

αik(x∗, x i), with αu ∼ N (0, K−1
uu )



f̄SR(x∗) = ku(x∗)>(Kuf Kfu + σ2
nKuu)−1Kuf y,

V[fSR(x∗)] = σ2
nku(x∗)>(Kuf Kfu + σ2

nKuu)−1ku(x∗)

SoR corresponds to using a degenerate GP prior (finite
rank)



Inducing Variables

Quiñonero-Candela and Rasmussen (JMLR, 2005)

p(f∗|y) =
1

p(y)

∫
p(y|f)p(f, f∗)d f

Now introduce inducing variables u

p(f, f∗) =

∫
p(f, f∗, u)du =

∫
p(f, f∗|u)p(u)du

Approximation

p(f, f∗) ' q(f, f∗)
def
=

∫
q(f|u)q(f∗|u)p(u)du

q(f|u) – training conditional
q(f∗|u) – test conditional



u

f f*
Inducing variables can be:

(sub)set of training points

(sub)set of test points

new x points



Projected Process Approximation—PP

(Csato & Opper, 2002; Seeger, et al 2003; aka PLV, DTC)

Inducing variables are subset of training points

q(y|u) = N (y|KfuK−1
uu u, σ2

nI)

KfuK−1
uu u is mean prediction for f given u

Predictive mean for PP is the same as SR, but variance is
never smaller. SR is like PP but with deterministic q(f∗|u)
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FITC, PITC and BCM

See Quiñonero-Candela and Rasmussen (2005) for overview

Under PP, q(f|u) = N (y|KfuK−1
uu u, 0)

Instead FITC (Snelson and Ghahramani, 2005) uses
individual predictive variances diag[Kff − KfuK−1

uu Kuf ], i.e.
fully independent training conditionals

PP can make poor predictions in low noise [S Q-C M R W]

PITC uses blocks of training points to improve the
approximation

BCM (Tresp, 2000) is the same approximation as PITC,
except that the test points are the inducing set



Sparse GPs using Pseudo-inputs

(Snelson and Ghahramani, 2006)

FITC approximation, but inducing inputs are new points, in
neither the training or test sets

Locations of the inducing inputs are changed along with
hyperparameters so as to maximize the approximate
marginal likelihood



Complexity

Method Storage Initialization Mean Variance
SD O(m2) O(m3) O(m) O(m2)
SR O(mn) O(m2n) O(m) O(m2)
PP, FITC O(mn) O(m2n) O(m) O(m2)
BCM O(mn) O(mn) O(mn)



Empirical Comparison

Robot arm problem, 44,484 training cases in 21-d, 4,449
test cases

For SD method subset of size m was chosen at random,
hyperparameters set by optimizing marginal likelihood
(ARD). Repeated 10 times

For SR, PP and BCM methods same
subsets/hyperparameters were used (BCM:
hyperparameters only)



Method m SMSE MSLL mean runtime (s)
SD 256 0.0813 ± 0.0198 -1.4291 ± 0.0558 0.8

512 0.0532 ± 0.0046 -1.5834 ± 0.0319 2.1
1024 0.0398 ± 0.0036 -1.7149 ± 0.0293 6.5
2048 0.0290 ± 0.0013 -1.8611 ± 0.0204 25.0
4096 0.0200 ± 0.0008 -2.0241 ± 0.0151 100.7

SR 256 0.0351 ± 0.0036 -1.6088 ± 0.0984 11.0
512 0.0259 ± 0.0014 -1.8185 ± 0.0357 27.0
1024 0.0193 ± 0.0008 -1.9728 ± 0.0207 79.5
2048 0.0150 ± 0.0005 -2.1126 ± 0.0185 284.8
4096 0.0110 ± 0.0004 -2.2474 ± 0.0204 927.6

PP 256 0.0351 ± 0.0036 -1.6940 ± 0.0528 17.3
512 0.0259 ± 0.0014 -1.8423 ± 0.0286 41.4
1024 0.0193 ± 0.0008 -1.9823 ± 0.0233 95.1
2048 0.0150 ± 0.0005 -2.1125 ± 0.0202 354.2
4096 0.0110 ± 0.0004 -2.2399 ± 0.0160 964.5

BCM 256 0.0314 ± 0.0046 -1.7066 ± 0.0550 506.4
512 0.0281 ± 0.0055 -1.7807 ± 0.0820 660.5
1024 0.0180 ± 0.0010 -2.0081 ± 0.0321 1043.2
2048 0.0136 ± 0.0007 -2.1364 ± 0.0266 1920.7
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Judged on time, for this dataset SD, SR and PP are on the
same trajectory, with BCM being worse

But what about greedy vs random subset selection,
methods to set hyperparameters, different datasets?

In general, we must take into account training
(initialization), testing and hyperparameter learning times
separately [S Q-C M R W]. Balance will depend on your
situation.
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