Linear Regression

Neil D. Lawrence

GPRS
6th August 2013

Outline

Introduction

Useful Texts

Regression

Outline

Introduction

Useful Texts

Regression

Rogers and Girolami

Bishop

Outline

Introduction

Useful Texts

Regression

Regression Examples

- Predict a real value, y_{i} given some inputs \mathbf{x}_{i}.
- Predict quality of meat given spectral measurements (Tecator data).
- Radiocarbon dating, the C14 calibration curve: predict age given quantity of C14 isotope.
- Predict quality of different Go or Backgammon moves given expert rated training data.

Olympic 100m Data

- Gold medal times for Olympic 100 m runners since 1896.

Image from Wikimedia
Commons
http://bit.ly/191adDC

Olympic 100m Data

Olympic Marathon Data

- Gold medal times for Olympic Marathon since 1896.
- Marathons before 1924 didn't have a standardised distance.
- Present results using pace per km.
- In 1904 Marathon was badly organised leading to very slow times.

Image from Wikimedia
Commons
http://bit.ly/16kMKHQ

Olympic Marathon Data

Olympic Marathon Data.

What is Machine Learning?

data

- data: observations, could be actively or passively acquired (meta-data).

What is Machine Learning?

data +

- data: observations, could be actively or passively acquired (meta-data).

What is Machine Learning?

$$
\text { data }+ \text { model }
$$

- data: observations, could be actively or passively acquired (meta-data).
- model: assumptions, based on previous experience (other data! transfer learning etc), or beliefs about the regularities of the universe. Inductive bias.

What is Machine Learning?

$$
\text { data }+ \text { model }=
$$

- data: observations, could be actively or passively acquired (meta-data).
- model: assumptions, based on previous experience (other data! transfer learning etc), or beliefs about the regularities of the universe. Inductive bias.

What is Machine Learning?

$$
\text { data }+ \text { model }=\text { prediction }
$$

- data: observations, could be actively or passively acquired (meta-data).
- model: assumptions, based on previous experience (other data! transfer learning etc), or beliefs about the regularities of the universe. Inductive bias.
- prediction: an action to be taken or a categorization or a quality score.

Regression: Linear Releationship

$$
y=m x+c
$$

- y : winning time/pace.

Regression: Linear Releationship

$$
y=m x+c
$$

- y : winning time/pace.
- x: year of Olympics.

Regression: Linear Releationship

$$
y=m x+c
$$

- y : winning time/pace.
- x: year of Olympics.
- m: rate of improvement over time.

Regression: Linear Releationship

$$
y=m x+c
$$

- y : winning time/pace.
- x: year of Olympics.
- m: rate of improvement over time.
- c: winning time at year 0 .

Two Simultaneous Equations

$$
\begin{aligned}
& y_{1}=m x_{1}+c \\
& y_{2}=m x_{2}+c
\end{aligned}
$$

Two Simultaneous Equations

A system of two simultaneous equations with two unknowns.

$$
y_{1}-y_{2}=m\left(x_{1}-x_{2}\right)
$$

Two Simultaneous Equations

A system of two simultaneous equations with two unknowns.

$$
\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=m
$$

Two Simultaneous Equations

A system of two simultaneous equations with two unknowns.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
c & =y_{1}-m x_{1}
\end{aligned}
$$

Two Simultaneous Equations

How do we deal with three simultaneous equations with only two unknowns?

Overdetermined System

- With two unknowns and two observations:

$$
\begin{aligned}
& y_{1}=m x_{1}+c \\
& y_{2}=m x_{2}+c
\end{aligned}
$$

Overdetermined System

- With two unknowns and two observations:

$$
\begin{aligned}
& y_{1}=m x_{1}+c \\
& y_{2}=m x_{2}+c
\end{aligned}
$$

- Additional observation leads to overdetermined system.

$$
y_{3}=m x_{3}+c
$$

Overdetermined System

- With two unknowns and two observations:

$$
\begin{aligned}
& y_{1}=m x_{1}+c \\
& y_{2}=m x_{2}+c
\end{aligned}
$$

- Additional observation leads to overdetermined system.

$$
y_{3}=m x_{3}+c
$$

- This problem is solved through a noise model $\epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$

$$
\begin{aligned}
& y_{1}=m x_{1}+c+\epsilon_{1} \\
& y_{2}=m x_{2}+c+\epsilon_{2} \\
& y_{3}=m x_{3}+c+\epsilon_{3}
\end{aligned}
$$

Noise Models

- We aren't modeling entire system.
- Noise model gives mismatch between model and data.
- Gaussian model justified by appeal to central limit theorem.
- Other models also possible (Student- t for heavy tails).
- Maximum likelihood with Gaussian noise leads to least squares.

$y=m x+c$

$y=m x+c$

point 1: $x=1, y=3$

$$
3=m+c
$$

point 2: $x=3, y=1$

$$
1=3 m+c
$$

point 3: $x=2, y=2.5$

$$
2.5=2 m+c
$$

$y=m x+c+\epsilon$

point 1: $x=1, y=3$

$$
3=m+c+\epsilon_{1}
$$

point 2: $x=3, y=1$

$$
1=3 m+c+\epsilon_{2}
$$

point 3: $x=2, y=2.5$

$$
2.5=2 m+c+\epsilon_{3}
$$

The Gaussian Density

- Perhaps the most common probability density.

$$
\begin{aligned}
p\left(y \mid \mu, \sigma^{2}\right) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(y-\mu)^{2}}{2 \sigma^{2}}\right) \\
& \triangleq \mathcal{N}\left(y \mid \mu, \sigma^{2}\right)
\end{aligned}
$$

- The Gaussian density.

Gaussian Density

The Gaussian PDF with $\mu=1.7$ and variance $\sigma^{2}=0.0225$. Mean shown as red line. It could represent the heights of a population of students.

Gaussian Density

$$
\mathcal{N}\left(y \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(y-\mu)^{2}}{2 \sigma^{2}}\right)
$$

σ^{2} is the variance of the density and μ is the mean.

Two Important Gaussian Properties

Sum of Gaussians

- Sum of Gaussian variables is also Gaussian.

$$
y_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)
$$

Two Important Gaussian Properties

Sum of Gaussians

- Sum of Gaussian variables is also Gaussian.

$$
y_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)
$$

And the sum is distributed as

$$
\sum_{i=1}^{n} y_{i} \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)
$$

Two Important Gaussian Properties

Sum of Gaussians

- Sum of Gaussian variables is also Gaussian.

$$
y_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)
$$

And the sum is distributed as

$$
\sum_{i=1}^{n} y_{i} \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)
$$

(Aside: As sum increases, sum of non-Gaussian, finite variance variables is also Gaussian [central limit theorem].)

Two Important Gaussian Properties

Sum of Gaussians

- Sum of Gaussian variables is also Gaussian.

$$
y_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)
$$

And the sum is distributed as

$$
\sum_{i=1}^{n} y_{i} \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)
$$

(Aside: As sum increases, sum of non-Gaussian, finite variance variables is also Gaussian [central limit theorem].)

Two Important Gaussian Properties

Scaling a Gaussian

- Scaling a Gaussian leads to a Gaussian.

Two Important Gaussian Properties

Scaling a Gaussian

- Scaling a Gaussian leads to a Gaussian.

$$
y \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

Two Important Gaussian Properties

Scaling a Gaussian

- Scaling a Gaussian leads to a Gaussian.

$$
y \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

And the scaled density is distributed as

$$
w y \sim \mathcal{N}\left(w \mu, w^{2} \sigma^{2}\right)
$$

A Probabilistic Process

- Set the mean of Gaussian to be a function.

$$
p\left(y_{i} \mid x_{i}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(y_{i}-f\left(x_{i}\right)\right)^{2}}{2 \sigma^{2}}\right)
$$

- This gives us a 'noisy function'.
- This is known as a process.

y as a Function of x

- In the standard Gaussian, parametized by mean and variance.
- Make the mean a linear function of an input.
- This leads to a regression model.

$$
\begin{aligned}
& y_{i}=f\left(x_{i}\right)+\epsilon_{i}, \\
& \epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right) .
\end{aligned}
$$

Linear Function

A linear regression between x and y.

Data Point Likelihood

- Likelihood of an individual data point

$$
p\left(y_{i} \mid x_{i}, m, c\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(y_{i}-m x_{i}-c\right)^{2}}{2 \sigma^{2}}\right)
$$

- Parameters are gradient, m, offset, c of the function and noise variance σ^{2}.

Data Set Likelihood

- If the noise, ϵ_{i} is sampled independently for each data point.
- Each data point is independent (given m and c).
- For independent variables:

$$
p(\mathbf{y})=\prod_{i=1}^{n} p\left(y_{i}\right)
$$

Data Set Likelihood

- If the noise, ϵ_{i} is sampled independently for each data point.
- Each data point is independent (given m and c).
- For independent variables:

$$
p(\mathbf{y} \mid \mathbf{x}, m, c)=\prod_{i=1}^{n} p\left(y_{i} \mid x_{i}, m, c\right)
$$

Data Set Likelihood

- If the noise, ϵ_{i} is sampled independently for each data point.
- Each data point is independent (given m and c).
- For independent variables:

$$
p(\mathbf{y} \mid \mathbf{x}, m, c)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(y_{i}-m x_{i}-c\right)^{2}}{2 \sigma^{2}}\right)
$$

Data Set Likelihood

- If the noise, ϵ_{i} is sampled independently for each data point.
- Each data point is independent (given m and c).
- For independent variables:

$$
p(\mathbf{y} \mid \mathbf{x}, m, c)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{\frac{n}{2}}} \exp \left(-\frac{\sum_{i=1}^{n}\left(y_{i}-m x_{i}-c\right)^{2}}{2 \sigma^{2}}\right) .
$$

Log Likelihood Function

- Normally work with the log likelihood:

$$
L\left(m, c, \sigma^{2}\right)=-\frac{n}{2} \log 2 \pi-\frac{n}{2} \log \sigma^{2}-\sum_{i=1}^{n} \frac{\left(y_{i}-m x_{i}-c\right)^{2}}{2 \sigma^{2}} .
$$

Consistency of Maximum Likelihood

- If data was really generated according to probability we specified.
- Correct parameters will be recovered in limit as $n \rightarrow \infty$.
- This can be proven through sample based approximations (law of large numbers) of "KL divergences".
- Mainstay of classical statistics.

Probabilistic Interpretation of the Error Function

- Probabilistic Interpretation for Error Function is Negative Log Likelihood.
- Minimizing error function is equivalent to maximizing log likelihood.
- Maximizing log likelihood is equivalent to maximizing the likelihood because log is monotonic.
- Probabilistic interpretation: Minimizing error function is equivalent to maximum likelihood with respect to parameters.

Error Function

- Negative log likelihood is the error function leading to an error function

$$
E\left(m, c, \sigma^{2}\right)=\frac{n}{2} \log \sigma^{2}+\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-m x_{i}-c\right)^{2}
$$

- Learning proceeds by minimizing this error function for the data set provided.

Connection: Sum of Squares Error

- Ignoring terms which don't depend on m and c gives

$$
E(m, c) \propto \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
$$

where $f\left(x_{i}\right)=m x_{i}+c$.

- This is known as the sum of squares error function.
- Commonly used and is closely associated with the Gaussian likelihood.

Mathematical Interpretation

- What is the mathematical interpretation?
- There is a cost function.
- It expresses mismatch between your prediction and reality.

$$
E(\mathbf{w})=\sum_{i=1}^{n}\left(y_{i}-m x_{i}+c-y_{i}\right)^{2}
$$

- This is known as the sum of squares error.

Learning is Optimization

- Learning is minimization of the cost function.
- At the minima the gradient is zero.
- Coordinate ascent, find gradient in each coordinate and set to zero.

$$
\frac{\mathrm{d} E(m)}{\mathrm{d} m}=-2 \sum_{i=1}^{n} x_{i}\left(y_{i}-m x_{i}-c\right)
$$

Learning is Optimization

- Learning is minimization of the cost function.
- At the minima the gradient is zero.
- Coordinate ascent, find gradient in each coordinate and set to zero.

$$
0=-2 \sum_{i=1}^{n} x_{i}\left(y_{i}-m x_{i}-c\right)
$$

Learning is Optimization

- Learning is minimization of the cost function.
- At the minima the gradient is zero.
- Coordinate ascent, find gradient in each coordinate and set to zero.

$$
0=-2 \sum_{i=1}^{n} x_{i} y_{i}+2 \sum_{i=1}^{n} m x_{i}^{2}+2 \sum_{i=1}^{n} c x_{i}
$$

Learning is Optimization

- Learning is minimization of the cost function.
- At the minima the gradient is zero.
- Coordinate ascent, find gradient in each coordinate and set to zero.

$$
m=\frac{\sum_{i=1}^{n}\left(y_{i}-c\right) x_{i}}{\sum_{i=1}^{n} x_{i}^{2}}
$$

Learning is Optimization

- Learning is minimization of the cost function.
- At the minima the gradient is zero.
- Coordinate ascent, find gradient in each coordinate and set to zero.

$$
\frac{\mathrm{d} E(c)}{\mathrm{d} c}=-2 \sum_{i=1}^{n}\left(y_{i}-m x_{i}-c\right)
$$

Learning is Optimization

- Learning is minimization of the cost function.
- At the minima the gradient is zero.
- Coordinate ascent, find gradient in each coordinate and set to zero.

$$
0=-2 \sum_{i=1}^{n}\left(y_{i}-m x_{i}-c\right)
$$

Learning is Optimization

- Learning is minimization of the cost function.
- At the minima the gradient is zero.
- Coordinate ascent, find gradient in each coordinate and set to zero.

$$
0=-2 \sum_{i=1}^{n} y_{i}+2 \sum_{i=1}^{n} m x_{i}+2 n c
$$

Learning is Optimization

- Learning is minimization of the cost function.
- At the minima the gradient is zero.
- Coordinate ascent, find gradient in each coordinate and set to zero.

$$
c=\frac{\sum_{i=1}^{n}\left(y_{i}-c x\right)}{n}
$$

Fixed Point Updates

Worked example.

$$
\begin{aligned}
c^{*} & =\frac{\sum_{i=1}^{n}\left(y_{i}-m^{*} x_{i}\right)}{n} \\
m^{*} & =\frac{\sum_{i=1}^{n} x_{i}\left(y_{i}-c^{*}\right)}{\sum_{i=1}^{n} x_{i}^{2}} \\
\sigma^{2} & =\frac{\sum_{i=1}^{n}\left(y_{i}-m^{*} x_{i}-c^{*}\right)^{2}}{n}
\end{aligned}
$$

Coordinate Descent

$$
E(m, c)
$$

Coordinate Descent

Iteration 1

Coordinate Descent

Iteration 1

Coordinate Descent

Iteration 2

Coordinate Descent

Iteration 2

Coordinate Descent

Iteration 3

Coordinate Descent

Iteration 3

Coordinate Descent

Iteration 4

Coordinate Descent

Iteration 4

Coordinate Descent

Iteration 5

Coordinate Descent

Iteration 5

Coordinate Descent

Iteration 6

Coordinate Descent

Iteration 6

Coordinate Descent

Iteration 7

Coordinate Descent

Iteration 7

Coordinate Descent

Iteration 8

Coordinate Descent

Iteration 8

Coordinate Descent

Iteration 9

Coordinate Descent

Iteration 9

Coordinate Descent

Iteration 10

Coordinate Descent

Iteration 20

Coordinate Descent

Iteration 30

Coordinate Descent

Iteration 30

Coordinate Descent

Iteration 30

Important Concepts Not Covered

- Optimization methods.
- Second order methods, conjugate gradient, quasi-Newton and Newton.
- Effective heuristics such as momentum.
- Local vs global solutions.

Linear Function

Linear regression for Male Olympics Marathon Gold Medal times.

Reading

- Section 1.2.5 of Bishop up to equation 1.65.
- Section 1.1-1.2 of Rogers and Girolami for fitting linear models.

References I

C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag, 2006. [Google Books] .
P. S. Laplace. Mémoire sur la probabilité des causes par les évènemens. In Mémoires de mathèmatique et de physique, presentés à lAcadémie Royale des Sciences, par divers savans, \mathcal{E} lù dans ses assemblées 6, pages 621-656, 1774. Translated in Stigler (1986).
S. Rogers and M. Girolami. A First Course in Machine Learning. CRC Press, 2011. [Google Books] .
S. M. Stigler. Laplace's 1774 memoir on inverse probability. Statistical Science, 1:359-378, 1986.

